EADST

Quick Review: Optimize Weight Rounding via Signed Gradient Descent for the Quantization of LLMs

Optimize Weight Rounding via Signed Gradient Descent for the Quantization of Large Language Models

Key Feature:

  • Adaptive Weight Rounding: Utilizes backward optimization to dynamically adjust the quantized integer values, either rounding them up or down, to optimize the model's performance during quantization.
相关标签
About Me
XD
Goals determine what you are going to be.
Category
标签云
FP32 Zip CV uWSGI Windows Safetensors mmap Michelin diffusers 关于博主 Distillation SPIE Review Web PIP Miniforge OCR Cloudreve 阿里云 TSV TensorFlow NameSilo IndexTTS2 PyTorch Proxy Breakpoint SAM Git hf CC Password HaggingFace LLAMA ModelScope LLM UNIX Plotly TensorRT tqdm HuggingFace Qwen2.5 GGML Quantize CLAP 飞书 报税 Statistics 多线程 Data Excel v0.dev 签证 CUDA scipy Linux RGB Permission Heatmap 版权 Hungarian RAR 净利润 PDB Tracking logger LaTeX VGG-16 Dataset NLP Claude FlashAttention Vim Use OpenCV 音频 Qwen2 EXCEL git-lfs YOLO BeautifulSoup COCO Mixtral Bipartite GIT CAM Freesound 视频信息 Algorithm Vmess Ubuntu Pickle ResNet-50 transformers Disk tar WAN Bert AI SQLite GoogLeNet FastAPI ChatGPT Docker Random Website Pandas TTS Hotel Shortcut Augmentation API Llama 继承 域名 FP16 公式 Diagram Markdown 搞笑 C++ BF16 多进程 Template LoRA torchinfo Attention Interview InvalidArgumentError Tensor Card Input 腾讯云 Knowledge Sklearn Ptyhon Color Bitcoin Image2Text printf Plate Quantization Domain FP64 Datetime CSV llama.cpp Animate Pytorch JSON Github v2ray 算法题 Tiktoken GPT4 Clash Jetson Pillow Google BTC Gemma Logo OpenAI Video Firewall Land CEIR Math uwsgi Base64 Food ONNX CTC MD5 WebCrawler VPN Paper 证件照 VSCode 财报 Paddle Anaconda Baidu Qwen Hilton Numpy Bin Streamlit PyCharm Transformers XML FP8 Translation GPTQ Conda Nginx PDF Django SVR QWEN Crawler DeepStream SQL UI XGBoost LeetCode NLTK Python DeepSeek Magnet git Jupyter
站点统计

本站现有博文311篇,共被浏览740370

本站已经建立2378天!

热门文章
文章归档
回到顶部