EADST

Code for SPIE paper - CEIR

CEIR

This project is for the SPIE paper - Novel Receipt Recognition with Deep Learning Algorithms. In this paper, we propose an end-to-end novel receipt recognition system for capturing effective information from receipts (CEIR).

CEIR code and results have been made available at: CEIR code

CEIR system demo is available at: CEIR Demo

The CEIR has three parts: preprocess, detection, recognition.

Introduction

In the preprocessing method, by converting the image to gray scale and obtaining the gradient with the Sobel operator, the outline of the receipt area is decided by morphological transformations with the elliptic kernel.

In text detection, the modified connectionist text proposal network to execute text detection. The pytorch implementation of detection is based on CTPN.

In text recognition, the convolutional recurrent neural network with the connectionist temporal classification with maximum entropy regularization as a loss function to update the weights in networks and extract the characters from receipt. The pytorch implementation of recognition is based on CRNN and ENESCTC.

We validate our system with the scanned receipts optical character recognition and information extraction (SROIE) database.

Dependency

Python 3.6.3 1. torch==1.4 2. torchvision 3. opencv-python 4. lmdb

Prediction

  1. Download pre-trained model from Google Drive and put the file under ./detection/output/ folder.

  2. Change the image name to demo.jpg in the CEIR folder.

  3. Run python ceir_crop.py for stage 1.
  4. Run python ceir_detect.py for stage 2.
  5. Run python ceir_recognize.py for stage 3.

  6. The result will be saved in ./result/.

Training

  1. Put dataset in ./dataset/train/image and ./dataset/train/label.

  2. Preprocess parameters can be changed in ./preprocess/crop.py.

  3. In the detection part, the ./detection/config.py is used for configuring. After that, run python train.py in the detection folder.

  4. In recognition, you need to change trainroot and other parameters in train.sh, then run sh train.sh to train.

相关标签
About Me
XD
Goals determine what you are going to be.
Category
标签云
Dataset Disk YOLO PyCharm 版权 PIP Quantization Conda 飞书 腾讯云 Clash CC GPT4 DeepStream Anaconda Numpy Safetensors uWSGI FP32 FP16 CEIR tqdm Logo BeautifulSoup Zip 证件照 Review Augmentation UI printf Animate PDB 报税 TensorFlow OpenCV GoogLeNet QWEN HaggingFace Hungarian Miniforge Password FastAPI Diagram Claude CV HuggingFace Pillow VSCode FlashAttention MD5 Random mmap GIT Michelin Bert git-lfs SVR OpenAI Plotly Bin FP64 VPN NLP XML Input Interview PyTorch Plate GGML 签证 Knowledge OCR ONNX SAM Gemma Pytorch Translation tar TensorRT Base64 Github LLAMA Baidu Firewall Streamlit Docker Vmess Tracking Python Freesound API EXCEL JSON v0.dev Llama Permission 关于博主 多线程 Nginx IndexTTS2 NLTK DeepSeek COCO Hilton SQLite SQL Video Algorithm 财报 Food 搞笑 logger Pickle Bitcoin Color Tensor VGG-16 Google Django scipy Crawler ResNet-50 Git Distillation Agent CAM llama.cpp LoRA TSV BF16 Sklearn Tiktoken v2ray RGB 公式 PDF 音频 阿里云 C++ Ptyhon FP8 Breakpoint Bipartite WAN NameSilo CTC Markdown ModelScope Transformers Mixtral Windows WebCrawler CUDA uwsgi AI Qwen2 多进程 LaTeX Quantize 继承 RAR Image2Text LLM Math Land git Proxy Statistics Web Pandas Jupyter Datetime Use Template Attention 净利润 XGBoost Heatmap Qwen Jetson Linux 域名 CLAP Card Paper 算法题 Website Qwen2.5 UNIX CSV Excel diffusers Cloudreve Vim torchinfo Hotel Magnet ChatGPT InvalidArgumentError LeetCode Data Paddle Shortcut transformers GPTQ Domain Ubuntu SPIE hf BTC TTS
站点统计

本站现有博文312篇,共被浏览744319

本站已经建立2387天!

热门文章
文章归档
回到顶部