EADST

Code for SPIE paper - CEIR

CEIR

This project is for the SPIE paper - Novel Receipt Recognition with Deep Learning Algorithms. In this paper, we propose an end-to-end novel receipt recognition system for capturing effective information from receipts (CEIR).

CEIR code and results have been made available at: CEIR code

CEIR system demo is available at: CEIR Demo

The CEIR has three parts: preprocess, detection, recognition.

Introduction

In the preprocessing method, by converting the image to gray scale and obtaining the gradient with the Sobel operator, the outline of the receipt area is decided by morphological transformations with the elliptic kernel.

In text detection, the modified connectionist text proposal network to execute text detection. The pytorch implementation of detection is based on CTPN.

In text recognition, the convolutional recurrent neural network with the connectionist temporal classification with maximum entropy regularization as a loss function to update the weights in networks and extract the characters from receipt. The pytorch implementation of recognition is based on CRNN and ENESCTC.

We validate our system with the scanned receipts optical character recognition and information extraction (SROIE) database.

Dependency

Python 3.6.3 1. torch==1.4 2. torchvision 3. opencv-python 4. lmdb

Prediction

  1. Download pre-trained model from Google Drive and put the file under ./detection/output/ folder.

  2. Change the image name to demo.jpg in the CEIR folder.

  3. Run python ceir_crop.py for stage 1.
  4. Run python ceir_detect.py for stage 2.
  5. Run python ceir_recognize.py for stage 3.

  6. The result will be saved in ./result/.

Training

  1. Put dataset in ./dataset/train/image and ./dataset/train/label.

  2. Preprocess parameters can be changed in ./preprocess/crop.py.

  3. In the detection part, the ./detection/config.py is used for configuring. After that, run python train.py in the detection folder.

  4. In recognition, you need to change trainroot and other parameters in train.sh, then run sh train.sh to train.

相关标签
About Me
XD
Goals determine what you are going to be.
Category
标签云
Gemma Bin Ptyhon LLM Quantize Excel Firewall Bitcoin Numpy 音频 Safetensors Image2Text RAR Streamlit PDB DeepStream Tensor Paddle Animate GoogLeNet Claude LoRA 多线程 CC CTC FlashAttention transformers LaTeX TensorFlow git llama.cpp 关于博主 Card Baidu 净利润 AI ResNet-50 Pandas TensorRT XML printf Cloudreve UNIX FP64 PyCharm 公式 VSCode Proxy CAM FastAPI Knowledge Hungarian tar GGML Michelin mmap 继承 NLTK CSV Github Vim Review Web Random NLP BTC Plotly Python Breakpoint diffusers IndexTTS2 Linux TTS Hilton FP8 阿里云 Qwen2 InvalidArgumentError torchinfo Food 算法题 版权 hf Magnet PyTorch Input Base64 XGBoost 财报 Conda JSON LLAMA Shortcut PIP Disk ONNX Transformers Augmentation ChatGPT Sklearn ModelScope Land Qwen Template Algorithm Nginx HaggingFace Password Pillow CEIR 域名 WebCrawler Jetson tqdm DeepSeek Plate Domain RGB 报税 BeautifulSoup SAM Color CV Translation TSV Windows Zip logger Data uwsgi LeetCode 腾讯云 BF16 uWSGI Pickle YOLO CUDA Quantization v2ray UI Miniforge Django Crawler Clash Website Dataset EXCEL Video Heatmap Permission v0.dev QWEN GPTQ Markdown Interview VPN Attention Use MD5 OpenCV API Ubuntu FP32 Docker Anaconda SPIE SVR Freesound Jupyter Tracking WAN Mixtral Datetime SQL OpenAI git-lfs Hotel CLAP Tiktoken Distillation Bert OCR scipy 证件照 FP16 GPT4 Math Llama Statistics Google NameSilo C++ 多进程 Qwen2.5 HuggingFace Git PDF GIT Pytorch SQLite 搞笑 飞书 签证 Paper Logo COCO Vmess Diagram Bipartite VGG-16
站点统计

本站现有博文309篇,共被浏览730438

本站已经建立2367天!

热门文章
文章归档
回到顶部