EADST

Code for SPIE paper - CEIR

CEIR

This project is for the SPIE paper - Novel Receipt Recognition with Deep Learning Algorithms. In this paper, we propose an end-to-end novel receipt recognition system for capturing effective information from receipts (CEIR).

CEIR code and results have been made available at: CEIR code

CEIR system demo is available at: CEIR Demo

The CEIR has three parts: preprocess, detection, recognition.

Introduction

In the preprocessing method, by converting the image to gray scale and obtaining the gradient with the Sobel operator, the outline of the receipt area is decided by morphological transformations with the elliptic kernel.

In text detection, the modified connectionist text proposal network to execute text detection. The pytorch implementation of detection is based on CTPN.

In text recognition, the convolutional recurrent neural network with the connectionist temporal classification with maximum entropy regularization as a loss function to update the weights in networks and extract the characters from receipt. The pytorch implementation of recognition is based on CRNN and ENESCTC.

We validate our system with the scanned receipts optical character recognition and information extraction (SROIE) database.

Dependency

Python 3.6.3 1. torch==1.4 2. torchvision 3. opencv-python 4. lmdb

Prediction

  1. Download pre-trained model from Google Drive and put the file under ./detection/output/ folder.

  2. Change the image name to demo.jpg in the CEIR folder.

  3. Run python ceir_crop.py for stage 1.
  4. Run python ceir_detect.py for stage 2.
  5. Run python ceir_recognize.py for stage 3.

  6. The result will be saved in ./result/.

Training

  1. Put dataset in ./dataset/train/image and ./dataset/train/label.

  2. Preprocess parameters can be changed in ./preprocess/crop.py.

  3. In the detection part, the ./detection/config.py is used for configuring. After that, run python train.py in the detection folder.

  4. In recognition, you need to change trainroot and other parameters in train.sh, then run sh train.sh to train.

相关标签
About Me
XD
Goals determine what you are going to be.
Category
标签云
TensorRT SAM 多进程 UI git Sklearn LLM BF16 YOLO Transformers Paper C++ Tracking 搞笑 printf Logo PyCharm OpenCV Safetensors Card CLAP XGBoost MD5 logger CAM 多线程 Math EXCEL Ubuntu 音频 Review CUDA Heatmap 递归学习法 飞书 transformers Streamlit hf ResNet-50 tar CV diffusers UNIX Mixtral Plotly BTC HuggingFace TTS NLTK Crawler Image2Text RGB Interview Attention Tensor Git Dataset Shortcut PIP COCO Firewall Color GPT4 公式 Hotel SQL Input 财报 Use OpenAI Augmentation Gemma Hilton Anaconda 证件照 NLP Distillation Algorithm Nginx Vim Paddle torchinfo FP32 scipy NameSilo CEIR 净利润 Qwen2.5 Bert SPIE VPN uwsgi Pytorch GIT 域名 Breakpoint 顶会 OCR git-lfs FP64 Freesound Zip FastAPI Qwen2 Datetime Google IndexTTS2 ModelScope Agent Quantize WAN Bin Miniforge Permission Baidu Ptyhon llama.cpp Claude Quantization FP8 LaTeX Food 算法题 PDF GoogLeNet 继承 CC Michelin DeepSeek Windows SVR Website FlashAttention Data Jupyter Domain 报税 签证 Animate API Proxy WebCrawler GPTQ CSV Video HaggingFace Plate FP16 TensorFlow Statistics Hungarian Bipartite 第一性原理 Magnet BeautifulSoup Numpy Pandas v2ray Vmess Pillow Github Search LoRA VGG-16 mmap Template LeetCode TSV Knowledge SQLite Llama Linux ChatGPT PyTorch Base64 Land QWEN DeepStream uWSGI tqdm v0.dev Web Python ONNX JSON RAR Cloudreve Excel Markdown Translation Clash 腾讯云 Pickle Password 强化学习 Conda Tiktoken 阿里云 版权 GGML InvalidArgumentError Diagram CTC Random Qwen LLAMA AI Disk Bitcoin VSCode PDB 图形思考法 Docker 关于博主 XML Jetson Django
站点统计

本站现有博文319篇,共被浏览751636

本站已经建立2407天!

热门文章
文章归档
回到顶部