EADST

Code for SPIE paper - CEIR

CEIR

This project is for the SPIE paper - Novel Receipt Recognition with Deep Learning Algorithms. In this paper, we propose an end-to-end novel receipt recognition system for capturing effective information from receipts (CEIR).

CEIR code and results have been made available at: CEIR code

CEIR system demo is available at: CEIR Demo

The CEIR has three parts: preprocess, detection, recognition.

Introduction

In the preprocessing method, by converting the image to gray scale and obtaining the gradient with the Sobel operator, the outline of the receipt area is decided by morphological transformations with the elliptic kernel.

In text detection, the modified connectionist text proposal network to execute text detection. The pytorch implementation of detection is based on CTPN.

In text recognition, the convolutional recurrent neural network with the connectionist temporal classification with maximum entropy regularization as a loss function to update the weights in networks and extract the characters from receipt. The pytorch implementation of recognition is based on CRNN and ENESCTC.

We validate our system with the scanned receipts optical character recognition and information extraction (SROIE) database.

Dependency

Python 3.6.3 1. torch==1.4 2. torchvision 3. opencv-python 4. lmdb

Prediction

  1. Download pre-trained model from Google Drive and put the file under ./detection/output/ folder.

  2. Change the image name to demo.jpg in the CEIR folder.

  3. Run python ceir_crop.py for stage 1.
  4. Run python ceir_detect.py for stage 2.
  5. Run python ceir_recognize.py for stage 3.

  6. The result will be saved in ./result/.

Training

  1. Put dataset in ./dataset/train/image and ./dataset/train/label.

  2. Preprocess parameters can be changed in ./preprocess/crop.py.

  3. In the detection part, the ./detection/config.py is used for configuring. After that, run python train.py in the detection folder.

  4. In recognition, you need to change trainroot and other parameters in train.sh, then run sh train.sh to train.

相关标签
About Me
XD
Goals determine what you are going to be.
Category
标签云
Agent Animate Template Input MD5 Firewall Qwen2 v0.dev CLAP FP16 ResNet-50 关于博主 LaTeX 财报 Numpy VGG-16 Tiktoken tqdm Password Linux GGML Tracking GoogLeNet Food Nginx GPTQ 算法题 Augmentation OpenAI Plate CV Breakpoint TensorFlow LLM logger git-lfs 公式 TTS Base64 Python Freesound DeepSeek FastAPI HaggingFace Search OCR Web Pillow 递归学习法 ChatGPT WebCrawler Diagram Land InvalidArgumentError Pytorch Clash EXCEL 飞书 Mixtral Card Ubuntu 第一性原理 报税 SPIE uWSGI 强化学习 Windows Interview FlashAttention Statistics PyCharm Safetensors Pandas FP8 Anaconda 继承 Shortcut RAR Docker mmap Sklearn 图形思考法 git hf Django Paper Google 净利润 Heatmap VPN llama.cpp Qwen2.5 PIP Review Video Proxy UI Pickle ONNX SVR TensorRT 阿里云 Hilton Domain XML PDB LeetCode Tensor Gemma RGB Git SQL BF16 Michelin CUDA NLTK IndexTTS2 Use Llama Color Logo BeautifulSoup scipy LLAMA 搞笑 Cloudreve Baidu Bipartite CSV CEIR 顶会 Jetson Hungarian 多进程 UNIX Jupyter Math Distillation tar Quantize DeepStream BTC OpenCV Hotel LoRA Permission Dataset API CAM Github CC 签证 XGBoost SAM QWEN Claude 版权 Image2Text ModelScope Plotly GIT Zip C++ Streamlit GPT4 域名 v2ray 多线程 CTC printf uwsgi Quantization transformers Transformers Conda FP32 NameSilo FP64 Website Bert torchinfo HuggingFace Translation Crawler Algorithm Miniforge Qwen WAN Vim TSV Knowledge YOLO Disk SQLite PyTorch Datetime Paddle News VSCode AI JSON Markdown Excel 腾讯云 diffusers Bin Data NLP PDF Vmess Magnet Bitcoin 证件照 音频 COCO Ptyhon Attention Random
站点统计

本站现有博文320篇,共被浏览759473

本站已经建立2428天!

热门文章
文章归档
回到顶部