EADST

Code for SPIE paper - CEIR

CEIR

This project is for the SPIE paper - Novel Receipt Recognition with Deep Learning Algorithms. In this paper, we propose an end-to-end novel receipt recognition system for capturing effective information from receipts (CEIR).

CEIR code and results have been made available at: CEIR code

CEIR system demo is available at: CEIR Demo

The CEIR has three parts: preprocess, detection, recognition.

Introduction

In the preprocessing method, by converting the image to gray scale and obtaining the gradient with the Sobel operator, the outline of the receipt area is decided by morphological transformations with the elliptic kernel.

In text detection, the modified connectionist text proposal network to execute text detection. The pytorch implementation of detection is based on CTPN.

In text recognition, the convolutional recurrent neural network with the connectionist temporal classification with maximum entropy regularization as a loss function to update the weights in networks and extract the characters from receipt. The pytorch implementation of recognition is based on CRNN and ENESCTC.

We validate our system with the scanned receipts optical character recognition and information extraction (SROIE) database.

Dependency

Python 3.6.3 1. torch==1.4 2. torchvision 3. opencv-python 4. lmdb

Prediction

  1. Download pre-trained model from Google Drive and put the file under ./detection/output/ folder.

  2. Change the image name to demo.jpg in the CEIR folder.

  3. Run python ceir_crop.py for stage 1.
  4. Run python ceir_detect.py for stage 2.
  5. Run python ceir_recognize.py for stage 3.

  6. The result will be saved in ./result/.

Training

  1. Put dataset in ./dataset/train/image and ./dataset/train/label.

  2. Preprocess parameters can be changed in ./preprocess/crop.py.

  3. In the detection part, the ./detection/config.py is used for configuring. After that, run python train.py in the detection folder.

  4. In recognition, you need to change trainroot and other parameters in train.sh, then run sh train.sh to train.

相关标签
About Me
XD
Goals determine what you are going to be.
Category
标签云
FP64 CLAP 继承 NLTK 报税 BF16 多进程 VPN UNIX Pandas DeepStream git Datetime Miniforge FlashAttention PyCharm Use Windows Vim Ubuntu Dataset API CV Review Land Logo Augmentation IndexTTS2 Bitcoin Jupyter VGG-16 Breakpoint CC 关于博主 Interview Streamlit Tracking GoogLeNet HuggingFace Sklearn Card Color LoRA Numpy OCR Claude uwsgi PyTorch C++ Pickle tar Food BTC Nginx Paddle 公式 Django 音频 InvalidArgumentError TensorRT Google ModelScope 财报 NameSilo PIP mmap 域名 torchinfo WebCrawler Transformers QWEN Cloudreve Statistics LLAMA 腾讯云 DeepSeek SPIE Anaconda Excel Tensor Markdown Heatmap 阿里云 XGBoost logger GPT4 Quantization Vmess Gemma Ptyhon Clash Shortcut Hilton Linux Data FastAPI 算法题 Hotel ONNX Attention Distillation BeautifulSoup v2ray diffusers JSON Bipartite CTC scipy Base64 git-lfs Random CSV HaggingFace Freesound Algorithm 签证 AI FP32 Video SQL Llama GPTQ Template FP8 uWSGI Mixtral Password Qwen 证件照 Math Translation Diagram Knowledge Pytorch Plate Safetensors OpenCV Proxy Input CEIR PDB Bert Zip hf Paper TSV Magnet SQLite GIT RAR Quantize 净利润 RGB CAM llama.cpp 多线程 Crawler LeetCode NLP UI FP16 WAN printf PDF Agent Firewall tqdm CUDA Image2Text 飞书 v0.dev COCO XML Docker Jetson EXCEL YOLO Michelin Web ResNet-50 GGML Github LLM SVR Plotly Animate ChatGPT 版权 Conda OpenAI Git LaTeX Qwen2.5 Permission 搞笑 Pillow Hungarian TensorFlow Bin Tiktoken Python VSCode Domain Disk Website transformers MD5 Baidu SAM TTS Qwen2
站点统计

本站现有博文312篇,共被浏览744339

本站已经建立2387天!

热门文章
文章归档
回到顶部