EADST

YOLOv5: Train the Model

YOLOv5: Train the Model

Download YOLOv5 link

Create a yaml file under ./data/our_data.yaml, change the image path, class number, and class names


# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
train: /dfs/data/others/byolov5/dataset/yolo_data/train/images
val: /dfs/data/others/byolov5/dataset/yolo_data/val/images

# number of classes
nc: 2

# class names
names: ['b', 't']

Download YOLOv5s model link and put it to ./weights.

Create a yaml file under ./models/our_model.yaml from yolov5s.yaml, change number of classes (nc)

YOLOv5 🚀 by Ultralytics, GPL-3.0 license

Parameters

nc: 2 # number of classes depth_multiple: 0.33 # model depth multiple width_multiple: 0.50 # layer channel multiple anchors: - [10,13, 16,30, 33,23] # P3/8 - [30,61, 62,45, 59,119] # P4/16 - [116,90, 156,198, 373,326] # P5/32

YOLOv5 v6.0 backbone

backbone: # [from, number, module, args] [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 [-1, 3, C3, [128]], [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 [-1, 6, C3, [256]], [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 [-1, 9, C3, [512]], [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 [-1, 3, C3, [1024]], [-1, 1, SPPF, [1024, 5]], # 9 ]

YOLOv5 v6.0 head

head: [[-1, 1, Conv, [512, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 6], 1, Concat, [1]], # cat backbone P4 [-1, 3, C3, [512, False]], # 13

[-1, 1, Conv, [256, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 4], 1, Concat, [1]], # cat backbone P3 [-1, 3, C3, [256, False]], # 17 (P3/8-small)

[-1, 1, Conv, [256, 3, 2]], [[-1, 14], 1, Concat, [1]], # cat head P4 [-1, 3, C3, [512, False]], # 20 (P4/16-medium)

[-1, 1, Conv, [512, 3, 2]], [[-1, 10], 1, Concat, [1]], # cat head P5 [-1, 3, C3, [1024, False]], # 23 (P5/32-large)

[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) ]

Run the following command to train the model

python train.py --data data/our_data.yaml --cfg models/our_model.yaml  --weights weights/yolov5s.pt --device 0

Reference:

yolov5训练自己的VOC数据集

相关标签
About Me
XD
Goals determine what you are going to be.
Category
标签云
Firewall Markdown CC Jupyter RGB PDB Hungarian Algorithm Image2Text Quantization Windows HuggingFace Mixtral InvalidArgumentError 报税 Distillation FP8 Qwen Random GPT4 Git SQL Datetime Input git-lfs Statistics UNIX diffusers PyTorch Paddle OpenCV ONNX IndexTTS2 递归学习法 GIT Pillow Michelin SQLite Web 飞书 公式 TensorFlow NLP 强化学习 MD5 SPIE uwsgi Diagram TSV SVR API printf VGG-16 Sklearn LLAMA Nginx v2ray Bitcoin mmap Card Clash Search Pytorch OpenAI BF16 C++ logger BeautifulSoup Ubuntu 算法题 HaggingFace NLTK 搞笑 AI LoRA Llama Math WebCrawler Translation uWSGI Magnet GoogLeNet COCO CTC DeepStream 证件照 Knowledge YOLO Cloudreve Tiktoken ChatGPT JSON FP64 Qwen2.5 PDF Excel 关于博主 Tensor UI Base64 QWEN Video Transformers BTC GGML DeepSeek 签证 PIP Attention Website hf Plotly OCR Docker Use Hotel PyCharm 财报 LeetCode XGBoost Land Permission 第一性原理 VPN torchinfo 图形思考法 CLAP Color CAM Breakpoint Django 净利润 Jetson 顶会 Template CV Gemma Claude git Vmess 腾讯云 tar CUDA Conda Paper Google ResNet-50 v0.dev Bert 域名 Bin Logo ModelScope FP32 Zip Pickle 音频 Heatmap 多线程 Numpy RAR NameSilo llama.cpp CSV Baidu transformers SAM LLM VSCode Interview TensorRT Hilton Food 版权 WAN XML tqdm 多进程 Proxy scipy LaTeX Qwen2 Bipartite Miniforge Streamlit Crawler EXCEL Tracking Linux 继承 Ptyhon News FlashAttention Augmentation Animate Vim Shortcut Github Review Freesound Disk Data Password Safetensors TTS Python Plate Quantize GPTQ FP16 Domain Agent 阿里云 CEIR Anaconda Pandas Dataset FastAPI
站点统计

本站现有博文320篇,共被浏览756736

本站已经建立2421天!

热门文章
文章归档
回到顶部