EADST

YOLOv5: Train the Model

YOLOv5: Train the Model

Download YOLOv5 link

Create a yaml file under ./data/our_data.yaml, change the image path, class number, and class names


# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
train: /dfs/data/others/byolov5/dataset/yolo_data/train/images
val: /dfs/data/others/byolov5/dataset/yolo_data/val/images

# number of classes
nc: 2

# class names
names: ['b', 't']

Download YOLOv5s model link and put it to ./weights.

Create a yaml file under ./models/our_model.yaml from yolov5s.yaml, change number of classes (nc)

YOLOv5 🚀 by Ultralytics, GPL-3.0 license

Parameters

nc: 2 # number of classes depth_multiple: 0.33 # model depth multiple width_multiple: 0.50 # layer channel multiple anchors: - [10,13, 16,30, 33,23] # P3/8 - [30,61, 62,45, 59,119] # P4/16 - [116,90, 156,198, 373,326] # P5/32

YOLOv5 v6.0 backbone

backbone: # [from, number, module, args] [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 [-1, 3, C3, [128]], [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 [-1, 6, C3, [256]], [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 [-1, 9, C3, [512]], [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 [-1, 3, C3, [1024]], [-1, 1, SPPF, [1024, 5]], # 9 ]

YOLOv5 v6.0 head

head: [[-1, 1, Conv, [512, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 6], 1, Concat, [1]], # cat backbone P4 [-1, 3, C3, [512, False]], # 13

[-1, 1, Conv, [256, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 4], 1, Concat, [1]], # cat backbone P3 [-1, 3, C3, [256, False]], # 17 (P3/8-small)

[-1, 1, Conv, [256, 3, 2]], [[-1, 14], 1, Concat, [1]], # cat head P4 [-1, 3, C3, [512, False]], # 20 (P4/16-medium)

[-1, 1, Conv, [512, 3, 2]], [[-1, 10], 1, Concat, [1]], # cat head P5 [-1, 3, C3, [1024, False]], # 23 (P5/32-large)

[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) ]

Run the following command to train the model

python train.py --data data/our_data.yaml --cfg models/our_model.yaml  --weights weights/yolov5s.pt --device 0

Reference:

yolov5训练自己的VOC数据集

相关标签
About Me
XD
Goals determine what you are going to be.
Category
标签云
Bin OpenAI Video llama.cpp Hungarian ResNet-50 Algorithm tar 公式 XGBoost Bipartite WAN Password UI COCO Review Gemma JSON git Hilton ONNX Animate Domain Logo Knowledge Math torchinfo OpenCV 域名 Pickle FP64 Llama YOLO CV SPIE 阿里云 VPN Claude 算法题 SQL Input FP32 Disk Markdown Qwen Linux Safetensors Quantization Paper XML Template CTC BTC logger 多进程 视频信息 TSV LLAMA VSCode HuggingFace tqdm 继承 API Miniforge Color Jupyter Breakpoint BeautifulSoup GIT NLP PIP Proxy CSV RAR Plotly TensorRT Mixtral C++ Numpy 腾讯云 PDF AI Excel Qwen2 Freesound Permission Ubuntu Distillation Datetime Hotel DeepSeek Web 财报 Tiktoken FastAPI LeetCode FP8 版权 NameSilo Heatmap Transformers mmap Michelin EXCEL Windows GoogLeNet RGB UNIX Django GPT4 FP16 transformers Dataset ChatGPT LaTeX CC Bert Crawler TensorFlow 证件照 Clash Jetson v0.dev Tensor Statistics Python Baidu Git Data CEIR PyCharm SAM Augmentation InvalidArgumentError GGML printf SQLite 报税 OCR Pandas Attention uWSGI IndexTTS2 Land Qwen2.5 Streamlit GPTQ Website 签证 Firewall Conda NLTK Interview Vim QWEN git-lfs PyTorch Github Base64 Use 多线程 关于博主 音频 Plate 飞书 Card FlashAttention Anaconda Diagram BF16 hf Tracking Magnet Nginx 净利润 Google Zip LLM Random Translation WebCrawler HaggingFace CAM DeepStream scipy Sklearn Shortcut Vmess PDB Quantize SVR Image2Text Cloudreve CLAP uwsgi Food Pytorch MD5 diffusers LoRA ModelScope CUDA Paddle v2ray Docker Pillow Bitcoin TTS Ptyhon VGG-16 搞笑
站点统计

本站现有博文311篇,共被浏览739707

本站已经建立2376天!

热门文章
文章归档
回到顶部