EADST

YOLOv5: Train the Model

YOLOv5: Train the Model

Download YOLOv5 link

Create a yaml file under ./data/our_data.yaml, change the image path, class number, and class names


# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
train: /dfs/data/others/byolov5/dataset/yolo_data/train/images
val: /dfs/data/others/byolov5/dataset/yolo_data/val/images

# number of classes
nc: 2

# class names
names: ['b', 't']

Download YOLOv5s model link and put it to ./weights.

Create a yaml file under ./models/our_model.yaml from yolov5s.yaml, change number of classes (nc)

YOLOv5 🚀 by Ultralytics, GPL-3.0 license

Parameters

nc: 2 # number of classes depth_multiple: 0.33 # model depth multiple width_multiple: 0.50 # layer channel multiple anchors: - [10,13, 16,30, 33,23] # P3/8 - [30,61, 62,45, 59,119] # P4/16 - [116,90, 156,198, 373,326] # P5/32

YOLOv5 v6.0 backbone

backbone: # [from, number, module, args] [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 [-1, 3, C3, [128]], [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 [-1, 6, C3, [256]], [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 [-1, 9, C3, [512]], [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 [-1, 3, C3, [1024]], [-1, 1, SPPF, [1024, 5]], # 9 ]

YOLOv5 v6.0 head

head: [[-1, 1, Conv, [512, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 6], 1, Concat, [1]], # cat backbone P4 [-1, 3, C3, [512, False]], # 13

[-1, 1, Conv, [256, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 4], 1, Concat, [1]], # cat backbone P3 [-1, 3, C3, [256, False]], # 17 (P3/8-small)

[-1, 1, Conv, [256, 3, 2]], [[-1, 14], 1, Concat, [1]], # cat head P4 [-1, 3, C3, [512, False]], # 20 (P4/16-medium)

[-1, 1, Conv, [512, 3, 2]], [[-1, 10], 1, Concat, [1]], # cat head P5 [-1, 3, C3, [1024, False]], # 23 (P5/32-large)

[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) ]

Run the following command to train the model

python train.py --data data/our_data.yaml --cfg models/our_model.yaml  --weights weights/yolov5s.pt --device 0

Reference:

yolov5训练自己的VOC数据集

相关标签
About Me
XD
Goals determine what you are going to be.
Category
标签云
Heatmap torchinfo HuggingFace PIP TensorFlow FP16 XGBoost SQL Vim Bitcoin News Magnet LaTeX Vmess OpenCV Hilton InvalidArgumentError Paper LoRA 腾讯云 Markdown PDB Claude Pillow CTC Hungarian Safetensors CV Template LLAMA 第一性原理 uwsgi API PDF Llama Permission Diagram 多线程 Windows Web Sklearn Firewall Animate NLTK Qwen2 Color llama.cpp Excel scipy Mixtral logger Bert CEIR 搞笑 Git Food UNIX Use SVR DeepStream Ptyhon Numpy git-lfs COCO Logo YOLO Proxy Python printf 版权 Baidu Zip JSON GPTQ Translation RGB Plotly BF16 Tracking Input VPN hf FP64 FastAPI Domain Dataset Google Disk XML GPT4 关于博主 SAM Bipartite RAR Jetson Video Gemma Cloudreve 强化学习 TSV Miniforge Random WebCrawler 证件照 Land ModelScope Tiktoken TensorRT Plate Ubuntu Transformers Crawler PyTorch 域名 FlashAttention Qwen2.5 SQLite NameSilo Pickle v0.dev Clash Password Interview Card OCR Base64 uWSGI Streamlit Image2Text Michelin Algorithm GoogLeNet Shortcut FP32 EXCEL Hotel Anaconda ChatGPT OpenAI AI Tensor 算法题 BTC DeepSeek Website tqdm Nginx 财报 Paddle CAM Conda IndexTTS2 Knowledge v2ray 飞书 VSCode ONNX Review 阿里云 Quantize ResNet-50 SPIE HaggingFace WAN MD5 CC 报税 Github Docker 多进程 签证 音频 QWEN Math TTS Search Pandas Jupyter Agent Distillation Breakpoint Qwen GGML Statistics LLM git 净利润 GIT 顶会 Data C++ Datetime Bin Pytorch NLP Quantization 图形思考法 BeautifulSoup 云服务器 tar VGG-16 Linux PyCharm mmap Freesound 递归学习法 CSV 公式 CLAP UI Attention CUDA diffusers Django FP8 Augmentation transformers LeetCode 继承
站点统计

本站现有博文321篇,共被浏览764715

本站已经建立2442天!

热门文章
文章归档
回到顶部