EADST

YOLOv5: Train the Model

YOLOv5: Train the Model

Download YOLOv5 link

Create a yaml file under ./data/our_data.yaml, change the image path, class number, and class names


# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
train: /dfs/data/others/byolov5/dataset/yolo_data/train/images
val: /dfs/data/others/byolov5/dataset/yolo_data/val/images

# number of classes
nc: 2

# class names
names: ['b', 't']

Download YOLOv5s model link and put it to ./weights.

Create a yaml file under ./models/our_model.yaml from yolov5s.yaml, change number of classes (nc)

YOLOv5 🚀 by Ultralytics, GPL-3.0 license

Parameters

nc: 2 # number of classes depth_multiple: 0.33 # model depth multiple width_multiple: 0.50 # layer channel multiple anchors: - [10,13, 16,30, 33,23] # P3/8 - [30,61, 62,45, 59,119] # P4/16 - [116,90, 156,198, 373,326] # P5/32

YOLOv5 v6.0 backbone

backbone: # [from, number, module, args] [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 [-1, 3, C3, [128]], [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 [-1, 6, C3, [256]], [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 [-1, 9, C3, [512]], [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 [-1, 3, C3, [1024]], [-1, 1, SPPF, [1024, 5]], # 9 ]

YOLOv5 v6.0 head

head: [[-1, 1, Conv, [512, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 6], 1, Concat, [1]], # cat backbone P4 [-1, 3, C3, [512, False]], # 13

[-1, 1, Conv, [256, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 4], 1, Concat, [1]], # cat backbone P3 [-1, 3, C3, [256, False]], # 17 (P3/8-small)

[-1, 1, Conv, [256, 3, 2]], [[-1, 14], 1, Concat, [1]], # cat head P4 [-1, 3, C3, [512, False]], # 20 (P4/16-medium)

[-1, 1, Conv, [512, 3, 2]], [[-1, 10], 1, Concat, [1]], # cat head P5 [-1, 3, C3, [1024, False]], # 23 (P5/32-large)

[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) ]

Run the following command to train the model

python train.py --data data/our_data.yaml --cfg models/our_model.yaml  --weights weights/yolov5s.pt --device 0

Reference:

yolov5训练自己的VOC数据集

相关标签
About Me
XD
Goals determine what you are going to be.
Category
标签云
GGML FlashAttention OpenCV Django Math Input Random 音频 XGBoost CAM Freesound hf uWSGI Diagram Safetensors ResNet-50 torchinfo HuggingFace PIP Windows Jetson 继承 LaTeX LLM VPN COCO Hungarian XML 关于博主 Pillow TensorRT 多进程 Interview Quantize FP64 Paddle OpenAI 财报 RAR Nginx Password tqdm Tiktoken BF16 Image2Text Agent Data TSV PDF SQLite 飞书 CV Bipartite Augmentation PyTorch Zip Review VSCode SQL Excel 域名 Translation SVR Markdown Disk mmap SPIE Cloudreve LoRA git C++ scipy 版权 Plate AI Hilton Ubuntu CLAP Algorithm Template CSV Pytorch GPT4 PyCharm Shortcut Llama ChatGPT WebCrawler Ptyhon Color Firewall Statistics Magnet Base64 DeepSeek Land CC FP32 Logo 算法题 LeetCode Bitcoin Streamlit Git 证件照 Sklearn Knowledge Dataset GIT Paper CUDA tar TensorFlow Python NameSilo Proxy Google Qwen2 FP16 API InvalidArgumentError Qwen2.5 MD5 ONNX Animate Jupyter 公式 多线程 Linux IndexTTS2 v0.dev BeautifulSoup GoogLeNet transformers OCR Tracking YOLO SAM QWEN ModelScope Distillation TTS Domain Anaconda Bin VGG-16 签证 Website LLAMA Card UNIX git-lfs Crawler Bert Baidu v2ray Mixtral Gemma GPTQ Quantization 净利润 报税 Web Transformers Heatmap Food Vmess logger Github DeepStream Video 阿里云 Conda Attention Use uwsgi JSON Vim Breakpoint Tensor CTC NLP FP8 PDB Datetime WAN FastAPI BTC EXCEL Michelin Hotel NLTK Claude Miniforge llama.cpp Clash HaggingFace RGB Pandas 腾讯云 Qwen printf 搞笑 Plotly Pickle Docker UI Permission Numpy diffusers CEIR
站点统计

本站现有博文312篇,共被浏览744452

本站已经建立2387天!

热门文章
文章归档
回到顶部