EADST

YOLOv5: Infer the Image with ONNX

YOLOv5: Infer the Image with ONNX

Convert to the onnx model from our well-trained pt model

python export.py --weights ./runs/train/exp/best.pt --include onnx

Infer the image with the onnx model

import os
import cv2
import numpy as np
import onnxruntime
import time

CLASSES=["b", "t"]

class YOLOV5(): def init(self,onnxpath): self.onnx_session=onnxruntime.InferenceSession(onnxpath) self.input_name=self.get_input_name() self.output_name=self.get_output_name()

def get_input_name(self):
    input_name=[]
    for node in self.onnx_session.get_inputs():
        input_name.append(node.name)
    return input_name

def get_output_name(self):
    output_name=[]
    for node in self.onnx_session.get_outputs():
        output_name.append(node.name)
    return output_name

def get_input_feed(self,img_tensor):
    input_feed={}
    for name in self.input_name:
        input_feed[name]=img_tensor
    return input_feed

def inference(self,img_path):
    img=cv2.imread(img_path)
    or_img=cv2.resize(img,(640,640))
    img=or_img[:,:,::-1].transpose(2,0,1)  #BGR2RGB and HWC2CHW
    img=img.astype(dtype=np.float32)
    img/=255.0
    img=np.expand_dims(img,axis=0)
    input_feed=self.get_input_feed(img)
    pred=self.onnx_session.run(None,input_feed)[0]
    return pred,or_img

def nms(dets, thresh): x1 = dets[:, 0] y1 = dets[:, 1] x2 = dets[:, 2] y2 = dets[:, 3]

areas = (y2 - y1 + 1) * (x2 - x1 + 1)
scores = dets[:, 4]
keep = []
index = scores.argsort()[::-1]

while index.size > 0:
    i = index[0]
    keep.append(i)

    x11 = np.maximum(x1[i], x1[index[1:]]) 
    y11 = np.maximum(y1[i], y1[index[1:]])
    x22 = np.minimum(x2[i], x2[index[1:]])
    y22 = np.minimum(y2[i], y2[index[1:]])

    w = np.maximum(0, x22 - x11 + 1)                              
    h = np.maximum(0, y22 - y11 + 1)

    overlaps = w * h

    ious = overlaps / (areas[i] + areas[index[1:]] - overlaps)
    idx = np.where(ious <= thresh)[0]
    index = index[idx + 1]
return keep

def xywh2xyxy(x): # [x, y, w, h] to [x1, y1, x2, y2] y = np.copy(x) y[:, 0] = x[:, 0] - x[:, 2] / 2 y[:, 1] = x[:, 1] - x[:, 3] / 2 y[:, 2] = x[:, 0] + x[:, 2] / 2 y[:, 3] = x[:, 1] + x[:, 3] / 2 return y

def filter_box(org_box,conf_thres,iou_thres): org_box=np.squeeze(org_box) conf = org_box[..., 4] > conf_thres box = org_box[conf == True]

cls_cinf = box[..., 5:]
cls = []
for i in range(len(cls_cinf)):
    cls.append(int(np.argmax(cls_cinf[i])))
all_cls = list(set(cls))

output = []
for i in range(len(all_cls)):
    curr_cls = all_cls[i]
    curr_cls_box = []
    curr_out_box = []
    for j in range(len(cls)):
        if cls[j] == curr_cls:
            box[j][5] = curr_cls
            curr_cls_box.append(box[j][:6])
    curr_cls_box = np.array(curr_cls_box)
    # curr_cls_box_old = np.copy(curr_cls_box)
    curr_cls_box = xywh2xyxy(curr_cls_box)
    curr_out_box = nms(curr_cls_box,iou_thres)
    for k in curr_out_box:
        output.append(curr_cls_box[k])
output = np.array(output)
return output

def draw(image,box_data):

boxes=box_data[...,:4].astype(np.int32) 
scores=box_data[...,4]
classes=box_data[...,5].astype(np.int32)

for box, score, cl in zip(boxes, scores, classes):
    top, left, right, bottom = box
    print('class: {}, score: {}'.format(CLASSES[cl], score))
    print('box left,top,right,down: [{}, {}, {}, {}]'.format(top, left, right, bottom))

    text_left = left
    text_top = top         
    color = (255, 0, 0)
    if CLASSES[cl] == "b":
        text_left += 50
        text_top -= 20     
        color = (0, 0, 255)
    cv2.rectangle(image, (top, left), (right, bottom), color, 2)
    cv2.putText(image, CLASSES[cl],
                (text_top, text_left),
                cv2.FONT_HERSHEY_SIMPLEX,
                0.6, color, 2)

if name=="main": onnx_path = "best.onnx" model = YOLOV5(onnx_path) img_path = "0_0.jpg" output, img = model.inference(img_path) outbox = filter_box(output,0.5,0.5) draw(img, outbox) cv2.imwrite(img_path[:-4]+"_res.jpg", img)

Reference:

YOLOV5模型转onnx并推理

相关标签
About Me
XD
Goals determine what you are going to be.
Category
标签云
TTS tar BeautifulSoup Git LLAMA Windows Pickle Python UNIX DeepStream Cloudreve Excel 关于博主 hf JSON EXCEL Safetensors Anaconda BF16 Docker Data VPN Pytorch 搞笑 Hilton SVR 财报 PyTorch Food CSV ChatGPT Paddle FlashAttention 算法题 Domain Sklearn ONNX QWEN TensorRT FastAPI Animate Translation RGB Qwen Tensor Michelin WAN LLM FP32 Distillation diffusers Zip llama.cpp Linux PyCharm Proxy uWSGI PDF 视频信息 Image2Text DeepSeek tqdm Random Color Vmess Vim Qwen2 HaggingFace Datetime VSCode SAM Plotly FP64 Crawler transformers TensorFlow CUDA GPTQ Knowledge Freesound Website CV Quantize GIT 腾讯云 CLAP IndexTTS2 SQLite Numpy 版权 Bitcoin InvalidArgumentError XGBoost LeetCode Quantization Diagram git Qwen2.5 LoRA Clash Jetson Breakpoint C++ v0.dev SQL GoogLeNet Github 证件照 printf Bert Baidu ResNet-50 Input Logo 净利润 WebCrawler CAM MD5 Pandas Review CC Plate FP16 Llama Heatmap RAR Use Firewall torchinfo mmap YOLO Template AI Gemma SPIE CTC Markdown Bin v2ray Hungarian API Bipartite Paper NLTK Disk Streamlit TSV ModelScope Base64 Password BTC PIP Land Hotel git-lfs Ubuntu Video XML logger Mixtral OpenCV 飞书 Permission Jupyter Interview uwsgi 多线程 Algorithm Tracking GGML Miniforge 继承 Card Math PDB UI Google Pillow Nginx Dataset HuggingFace 签证 域名 Django GPT4 Claude 阿里云 FP8 多进程 OpenAI Augmentation Ptyhon NameSilo Attention CEIR Shortcut OCR COCO Conda VGG-16 Tiktoken Statistics Transformers Web 报税 NLP scipy LaTeX Magnet 音频 公式
站点统计

本站现有博文311篇,共被浏览739706

本站已经建立2376天!

热门文章
文章归档
回到顶部