EADST

YOLOv5: Infer the Image with ONNX

YOLOv5: Infer the Image with ONNX

Convert to the onnx model from our well-trained pt model

python export.py --weights ./runs/train/exp/best.pt --include onnx

Infer the image with the onnx model

import os
import cv2
import numpy as np
import onnxruntime
import time

CLASSES=["b", "t"]

class YOLOV5(): def init(self,onnxpath): self.onnx_session=onnxruntime.InferenceSession(onnxpath) self.input_name=self.get_input_name() self.output_name=self.get_output_name()

def get_input_name(self):
    input_name=[]
    for node in self.onnx_session.get_inputs():
        input_name.append(node.name)
    return input_name

def get_output_name(self):
    output_name=[]
    for node in self.onnx_session.get_outputs():
        output_name.append(node.name)
    return output_name

def get_input_feed(self,img_tensor):
    input_feed={}
    for name in self.input_name:
        input_feed[name]=img_tensor
    return input_feed

def inference(self,img_path):
    img=cv2.imread(img_path)
    or_img=cv2.resize(img,(640,640))
    img=or_img[:,:,::-1].transpose(2,0,1)  #BGR2RGB and HWC2CHW
    img=img.astype(dtype=np.float32)
    img/=255.0
    img=np.expand_dims(img,axis=0)
    input_feed=self.get_input_feed(img)
    pred=self.onnx_session.run(None,input_feed)[0]
    return pred,or_img

def nms(dets, thresh): x1 = dets[:, 0] y1 = dets[:, 1] x2 = dets[:, 2] y2 = dets[:, 3]

areas = (y2 - y1 + 1) * (x2 - x1 + 1)
scores = dets[:, 4]
keep = []
index = scores.argsort()[::-1]

while index.size > 0:
    i = index[0]
    keep.append(i)

    x11 = np.maximum(x1[i], x1[index[1:]]) 
    y11 = np.maximum(y1[i], y1[index[1:]])
    x22 = np.minimum(x2[i], x2[index[1:]])
    y22 = np.minimum(y2[i], y2[index[1:]])

    w = np.maximum(0, x22 - x11 + 1)                              
    h = np.maximum(0, y22 - y11 + 1)

    overlaps = w * h

    ious = overlaps / (areas[i] + areas[index[1:]] - overlaps)
    idx = np.where(ious <= thresh)[0]
    index = index[idx + 1]
return keep

def xywh2xyxy(x): # [x, y, w, h] to [x1, y1, x2, y2] y = np.copy(x) y[:, 0] = x[:, 0] - x[:, 2] / 2 y[:, 1] = x[:, 1] - x[:, 3] / 2 y[:, 2] = x[:, 0] + x[:, 2] / 2 y[:, 3] = x[:, 1] + x[:, 3] / 2 return y

def filter_box(org_box,conf_thres,iou_thres): org_box=np.squeeze(org_box) conf = org_box[..., 4] > conf_thres box = org_box[conf == True]

cls_cinf = box[..., 5:]
cls = []
for i in range(len(cls_cinf)):
    cls.append(int(np.argmax(cls_cinf[i])))
all_cls = list(set(cls))

output = []
for i in range(len(all_cls)):
    curr_cls = all_cls[i]
    curr_cls_box = []
    curr_out_box = []
    for j in range(len(cls)):
        if cls[j] == curr_cls:
            box[j][5] = curr_cls
            curr_cls_box.append(box[j][:6])
    curr_cls_box = np.array(curr_cls_box)
    # curr_cls_box_old = np.copy(curr_cls_box)
    curr_cls_box = xywh2xyxy(curr_cls_box)
    curr_out_box = nms(curr_cls_box,iou_thres)
    for k in curr_out_box:
        output.append(curr_cls_box[k])
output = np.array(output)
return output

def draw(image,box_data):

boxes=box_data[...,:4].astype(np.int32) 
scores=box_data[...,4]
classes=box_data[...,5].astype(np.int32)

for box, score, cl in zip(boxes, scores, classes):
    top, left, right, bottom = box
    print('class: {}, score: {}'.format(CLASSES[cl], score))
    print('box left,top,right,down: [{}, {}, {}, {}]'.format(top, left, right, bottom))

    text_left = left
    text_top = top         
    color = (255, 0, 0)
    if CLASSES[cl] == "b":
        text_left += 50
        text_top -= 20     
        color = (0, 0, 255)
    cv2.rectangle(image, (top, left), (right, bottom), color, 2)
    cv2.putText(image, CLASSES[cl],
                (text_top, text_left),
                cv2.FONT_HERSHEY_SIMPLEX,
                0.6, color, 2)

if name=="main": onnx_path = "best.onnx" model = YOLOV5(onnx_path) img_path = "0_0.jpg" output, img = model.inference(img_path) outbox = filter_box(output,0.5,0.5) draw(img, outbox) cv2.imwrite(img_path[:-4]+"_res.jpg", img)

Reference:

YOLOV5模型转onnx并推理

相关标签
About Me
XD
Goals determine what you are going to be.
Category
标签云
VGG-16 UI Augmentation Sklearn 多线程 Knowledge PyCharm COCO Python Claude CC Safetensors 算法题 Zip hf Attention GIT GPT4 InvalidArgumentError ChatGPT Heatmap Hilton Google PDB 腾讯云 Nginx Quantize CTC CAM GGML Land Web Proxy NLTK Review Gemma 飞书 Numpy Hungarian Hotel Bert llama.cpp OCR IndexTTS2 多进程 OpenCV Ubuntu printf logger Domain Tensor Card TensorFlow v2ray FP8 FP16 TensorRT FlashAttention ModelScope TTS 域名 Disk Base64 Windows HuggingFace Conda Paper Random Datetime Food Dataset Logo Vmess RGB Website Markdown Input VPN BF16 Django 搞笑 MD5 API ResNet-50 GoogLeNet JSON VSCode CLAP SPIE transformers 版权 Distillation uwsgi torchinfo LaTeX Image2Text Git Translation 音频 mmap BTC 关于博主 签证 NameSilo Math SAM Pickle Bin Github scipy WAN SQLite UNIX Ptyhon Tracking Data Use ONNX Bipartite LLM AI Algorithm 财报 YOLO BeautifulSoup Pytorch Excel Breakpoint TSV Template Miniforge WebCrawler XGBoost CUDA PyTorch Plotly Mixtral Transformers Paddle CEIR Quantization git-lfs Plate HaggingFace LLAMA Magnet Animate diffusers Color 继承 公式 DeepSeek NLP Docker XML OpenAI 报税 Michelin Streamlit Qwen2 v0.dev CSV Interview tqdm Jupyter GPTQ DeepStream LeetCode Firewall FastAPI Permission EXCEL uWSGI CV Video tar C++ QWEN SVR SQL Statistics 阿里云 Diagram RAR Clash Vim 证件照 Cloudreve Tiktoken Crawler Shortcut Password Qwen2.5 Freesound 净利润 FP64 Llama Linux LoRA FP32 Qwen git Jetson Bitcoin PIP Pillow Pandas Anaconda Baidu PDF
站点统计

本站现有博文311篇,共被浏览744012

本站已经建立2386天!

热门文章
文章归档
回到顶部