YOLOv5: Infer the Image with ONNX
作者:XD / 发表: 2022年12月22日 03:40 / 更新: 2022年12月22日 03:52 / 编程笔记 / 阅读量:1539
YOLOv5: Infer the Image with ONNX
Convert to the onnx model from our well-trained pt model
python export.py --weights ./runs/train/exp/best.pt --include onnx
Infer the image with the onnx model
import os
import cv2
import numpy as np
import onnxruntime
import time
CLASSES=["b", "t"]
class YOLOV5():
def init(self,onnxpath):
self.onnx_session=onnxruntime.InferenceSession(onnxpath)
self.input_name=self.get_input_name()
self.output_name=self.get_output_name()
def get_input_name(self):
input_name=[]
for node in self.onnx_session.get_inputs():
input_name.append(node.name)
return input_name
def get_output_name(self):
output_name=[]
for node in self.onnx_session.get_outputs():
output_name.append(node.name)
return output_name
def get_input_feed(self,img_tensor):
input_feed={}
for name in self.input_name:
input_feed[name]=img_tensor
return input_feed
def inference(self,img_path):
img=cv2.imread(img_path)
or_img=cv2.resize(img,(640,640))
img=or_img[:,:,::-1].transpose(2,0,1) #BGR2RGB and HWC2CHW
img=img.astype(dtype=np.float32)
img/=255.0
img=np.expand_dims(img,axis=0)
input_feed=self.get_input_feed(img)
pred=self.onnx_session.run(None,input_feed)[0]
return pred,or_img
def nms(dets, thresh):
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
areas = (y2 - y1 + 1) * (x2 - x1 + 1)
scores = dets[:, 4]
keep = []
index = scores.argsort()[::-1]
while index.size > 0:
i = index[0]
keep.append(i)
x11 = np.maximum(x1[i], x1[index[1:]])
y11 = np.maximum(y1[i], y1[index[1:]])
x22 = np.minimum(x2[i], x2[index[1:]])
y22 = np.minimum(y2[i], y2[index[1:]])
w = np.maximum(0, x22 - x11 + 1)
h = np.maximum(0, y22 - y11 + 1)
overlaps = w * h
ious = overlaps / (areas[i] + areas[index[1:]] - overlaps)
idx = np.where(ious <= thresh)[0]
index = index[idx + 1]
return keep
def xywh2xyxy(x):
# [x, y, w, h] to [x1, y1, x2, y2]
y = np.copy(x)
y[:, 0] = x[:, 0] - x[:, 2] / 2
y[:, 1] = x[:, 1] - x[:, 3] / 2
y[:, 2] = x[:, 0] + x[:, 2] / 2
y[:, 3] = x[:, 1] + x[:, 3] / 2
return y
def filter_box(org_box,conf_thres,iou_thres):
org_box=np.squeeze(org_box)
conf = org_box[..., 4] > conf_thres
box = org_box[conf == True]
cls_cinf = box[..., 5:]
cls = []
for i in range(len(cls_cinf)):
cls.append(int(np.argmax(cls_cinf[i])))
all_cls = list(set(cls))
output = []
for i in range(len(all_cls)):
curr_cls = all_cls[i]
curr_cls_box = []
curr_out_box = []
for j in range(len(cls)):
if cls[j] == curr_cls:
box[j][5] = curr_cls
curr_cls_box.append(box[j][:6])
curr_cls_box = np.array(curr_cls_box)
# curr_cls_box_old = np.copy(curr_cls_box)
curr_cls_box = xywh2xyxy(curr_cls_box)
curr_out_box = nms(curr_cls_box,iou_thres)
for k in curr_out_box:
output.append(curr_cls_box[k])
output = np.array(output)
return output
def draw(image,box_data):
boxes=box_data[...,:4].astype(np.int32)
scores=box_data[...,4]
classes=box_data[...,5].astype(np.int32)
for box, score, cl in zip(boxes, scores, classes):
top, left, right, bottom = box
print('class: {}, score: {}'.format(CLASSES[cl], score))
print('box left,top,right,down: [{}, {}, {}, {}]'.format(top, left, right, bottom))
text_left = left
text_top = top
color = (255, 0, 0)
if CLASSES[cl] == "b":
text_left += 50
text_top -= 20
color = (0, 0, 255)
cv2.rectangle(image, (top, left), (right, bottom), color, 2)
cv2.putText(image, CLASSES[cl],
(text_top, text_left),
cv2.FONT_HERSHEY_SIMPLEX,
0.6, color, 2)
if name=="main":
onnx_path = "best.onnx"
model = YOLOV5(onnx_path)
img_path = "0_0.jpg"
output, img = model.inference(img_path)
outbox = filter_box(output,0.5,0.5)
draw(img, outbox)
cv2.imwrite(img_path[:-4]+"_res.jpg", img)