EADST

YOLOv5: Infer the Image with ONNX

YOLOv5: Infer the Image with ONNX

Convert to the onnx model from our well-trained pt model

python export.py --weights ./runs/train/exp/best.pt --include onnx

Infer the image with the onnx model

import os
import cv2
import numpy as np
import onnxruntime
import time

CLASSES=["b", "t"]

class YOLOV5(): def init(self,onnxpath): self.onnx_session=onnxruntime.InferenceSession(onnxpath) self.input_name=self.get_input_name() self.output_name=self.get_output_name()

def get_input_name(self):
    input_name=[]
    for node in self.onnx_session.get_inputs():
        input_name.append(node.name)
    return input_name

def get_output_name(self):
    output_name=[]
    for node in self.onnx_session.get_outputs():
        output_name.append(node.name)
    return output_name

def get_input_feed(self,img_tensor):
    input_feed={}
    for name in self.input_name:
        input_feed[name]=img_tensor
    return input_feed

def inference(self,img_path):
    img=cv2.imread(img_path)
    or_img=cv2.resize(img,(640,640))
    img=or_img[:,:,::-1].transpose(2,0,1)  #BGR2RGB and HWC2CHW
    img=img.astype(dtype=np.float32)
    img/=255.0
    img=np.expand_dims(img,axis=0)
    input_feed=self.get_input_feed(img)
    pred=self.onnx_session.run(None,input_feed)[0]
    return pred,or_img

def nms(dets, thresh): x1 = dets[:, 0] y1 = dets[:, 1] x2 = dets[:, 2] y2 = dets[:, 3]

areas = (y2 - y1 + 1) * (x2 - x1 + 1)
scores = dets[:, 4]
keep = []
index = scores.argsort()[::-1]

while index.size > 0:
    i = index[0]
    keep.append(i)

    x11 = np.maximum(x1[i], x1[index[1:]]) 
    y11 = np.maximum(y1[i], y1[index[1:]])
    x22 = np.minimum(x2[i], x2[index[1:]])
    y22 = np.minimum(y2[i], y2[index[1:]])

    w = np.maximum(0, x22 - x11 + 1)                              
    h = np.maximum(0, y22 - y11 + 1)

    overlaps = w * h

    ious = overlaps / (areas[i] + areas[index[1:]] - overlaps)
    idx = np.where(ious <= thresh)[0]
    index = index[idx + 1]
return keep

def xywh2xyxy(x): # [x, y, w, h] to [x1, y1, x2, y2] y = np.copy(x) y[:, 0] = x[:, 0] - x[:, 2] / 2 y[:, 1] = x[:, 1] - x[:, 3] / 2 y[:, 2] = x[:, 0] + x[:, 2] / 2 y[:, 3] = x[:, 1] + x[:, 3] / 2 return y

def filter_box(org_box,conf_thres,iou_thres): org_box=np.squeeze(org_box) conf = org_box[..., 4] > conf_thres box = org_box[conf == True]

cls_cinf = box[..., 5:]
cls = []
for i in range(len(cls_cinf)):
    cls.append(int(np.argmax(cls_cinf[i])))
all_cls = list(set(cls))

output = []
for i in range(len(all_cls)):
    curr_cls = all_cls[i]
    curr_cls_box = []
    curr_out_box = []
    for j in range(len(cls)):
        if cls[j] == curr_cls:
            box[j][5] = curr_cls
            curr_cls_box.append(box[j][:6])
    curr_cls_box = np.array(curr_cls_box)
    # curr_cls_box_old = np.copy(curr_cls_box)
    curr_cls_box = xywh2xyxy(curr_cls_box)
    curr_out_box = nms(curr_cls_box,iou_thres)
    for k in curr_out_box:
        output.append(curr_cls_box[k])
output = np.array(output)
return output

def draw(image,box_data):

boxes=box_data[...,:4].astype(np.int32) 
scores=box_data[...,4]
classes=box_data[...,5].astype(np.int32)

for box, score, cl in zip(boxes, scores, classes):
    top, left, right, bottom = box
    print('class: {}, score: {}'.format(CLASSES[cl], score))
    print('box left,top,right,down: [{}, {}, {}, {}]'.format(top, left, right, bottom))

    text_left = left
    text_top = top         
    color = (255, 0, 0)
    if CLASSES[cl] == "b":
        text_left += 50
        text_top -= 20     
        color = (0, 0, 255)
    cv2.rectangle(image, (top, left), (right, bottom), color, 2)
    cv2.putText(image, CLASSES[cl],
                (text_top, text_left),
                cv2.FONT_HERSHEY_SIMPLEX,
                0.6, color, 2)

if name=="main": onnx_path = "best.onnx" model = YOLOV5(onnx_path) img_path = "0_0.jpg" output, img = model.inference(img_path) outbox = filter_box(output,0.5,0.5) draw(img, outbox) cv2.imwrite(img_path[:-4]+"_res.jpg", img)

Reference:

YOLOV5模型转onnx并推理

相关标签
About Me
XD
Goals determine what you are going to be.
Category
标签云
JSON AI Qwen2 CV Knowledge mmap Random GGML PDF DeepSeek Github Anaconda Excel API Bipartite Jupyter Gemma 多进程 Interview Template Clash Streamlit PIP IndexTTS2 递归学习法 第一性原理 Crawler VSCode Quantization 音频 Tiktoken Shortcut Agent 多线程 uwsgi Llama OpenCV 强化学习 FastAPI Miniforge GoogLeNet transformers Video Input CAM Django Web DeepStream Breakpoint Michelin Datetime Card Land OCR SQLite BeautifulSoup VGG-16 Distillation Bitcoin 顶会 Permission 域名 PyCharm WAN printf Review HuggingFace Statistics v2ray Algorithm Search CUDA LoRA Vim Conda Pickle Sklearn YOLO Ubuntu Math MD5 git-lfs Linux Tensor BTC Baidu CSV EXCEL ChatGPT XML Pandas Nginx Password XGBoost UI Transformers UNIX TensorRT SPIE 飞书 CLAP NameSilo Bert 净利润 WebCrawler SQL NLP Safetensors Disk FlashAttention PDB LLM OpenAI Quantize git Hotel Food Diagram Zip ResNet-50 logger InvalidArgumentError Logo 阿里云 财报 Domain LaTeX scipy HaggingFace GIT Cloudreve LeetCode Bin Plotly SVR Base64 RAR v0.dev Docker 证件照 算法题 Dataset TTS Pytorch Hungarian Qwen tar QWEN Git Paddle RGB Pillow Jetson llama.cpp Website 关于博主 FP32 COCO Attention Google 版权 FP16 Python Hilton Color CC CTC Tracking Claude Animate PyTorch 公式 CEIR SAM ONNX torchinfo Paper Magnet Plate Ptyhon Translation C++ uWSGI GPTQ Firewall Freesound Windows Markdown 腾讯云 报税 NLTK diffusers 继承 BF16 Data Mixtral tqdm FP64 GPT4 签证 Image2Text FP8 Heatmap hf Numpy Qwen2.5 News ModelScope VPN TSV LLAMA Vmess 图形思考法 Augmentation 搞笑 TensorFlow Use Proxy
站点统计

本站现有博文320篇,共被浏览756758

本站已经建立2421天!

热门文章
文章归档
回到顶部