EADST

YOLOv5: Data Preparation for Training

YOLOv5: Data Preparation for Training, from VOC Format to YOLO Format

First, split the data to train and val, and get txt files

import os
import random

train_percent = 0.95 xmlfilepath = 'bucket_v1/Annotations' txtsavepath = 'bucket_v1/ImageSets' total_xml = os.listdir(xmlfilepath)

num = len(total_xml) trainval = range(num) tr = int(num * train_percent) train = random.sample(trainval, tr)

ftrain = open('bucket_v1/ImageSets/Main/train.txt', 'w') fval = open('bucket_v1/ImageSets/Main/val.txt', 'w')

for i in trainval: name = total_xml[i][:-4] + '\n' if i in train: ftrain.write(name) else: fval.write(name)

Second, convert VOC format data (xml) to YOLO format data (txt)

import os
from tqdm import tqdm
from lxml import etree
import json
import shutil

voc_root = "/dfs/data/others/byolov5/dataset/bucket_v1" voc_version = "bucket_v1"

train_txt = "train.txt" val_txt = "val.txt" save_file_root = "/dfs/data/others/byolov5/dataset/yolo_data"

voc_images_path = os.path.join(voc_root, "JPEGImages") voc_xml_path = os.path.join(voc_root, "Annotations") train_txt_path = os.path.join(voc_root, "ImageSets", "Main", train_txt) val_txt_path = os.path.join(voc_root, "ImageSets", "Main", val_txt)

def parse_xml_to_dict(xml): if len(xml) == 0: return {xml.tag: xml.text} result = {} for child in xml: child_result = parse_xml_to_dict(child)
if child.tag != 'object': result[child.tag] = child_result[child.tag] else: if child.tag not in result:
result[child.tag] = [] result[child.tag].append(child_result[child.tag]) return {xml.tag: result}

def translate_info(file_names: list, save_root: str, class_dict: dict, train_val='train'): save_txt_path = os.path.join(save_root, train_val, "labels") if os.path.exists(save_txt_path) is False: os.makedirs(save_txt_path) save_images_path = os.path.join(save_root, train_val, "images") if os.path.exists(save_images_path) is False: os.makedirs(save_images_path)

for file in tqdm(file_names, desc="translate {} file...".format(train_val)):
    img_path = os.path.join(voc_images_path, file + ".jpg")
    assert os.path.exists(img_path), "file:{} not exist...".format(img_path)

    xml_path = os.path.join(voc_xml_path, file + ".xml")
    assert os.path.exists(xml_path), "file:{} not exist...".format(xml_path)

    # read xml
    with open(xml_path, encoding='UTF-8') as fid:
        xml_str = fid.read()
    xml = etree.fromstring(xml_str)
    data = parse_xml_to_dict(xml)["annotation"]
    img_height = int(data["size"]["height"])
    img_width = int(data["size"]["width"])
    # write object info into txt
    # assert "object" in data.keys(), "file: '{}' lack of object key.".format(xml_path)
    if "object" not in data.keys():
        print("Warning: in '{}' xml, there are no objects.".format(xml_path))
        continue

    with open(os.path.join(save_txt_path, file + ".txt"), "w") as f:
        for index, obj in enumerate(data["object"]):
            xmin = float(obj["bndbox"]["xmin"])
            xmax = float(obj["bndbox"]["xmax"])
            ymin = float(obj["bndbox"]["ymin"])
            ymax = float(obj["bndbox"]["ymax"])
            class_name = obj["name"]
            class_index = class_dict[class_name] - 1

            if xmax <= xmin or ymax <= ymin:
                print("Warning: in '{}' xml, there are some bbox w/h <=0".format(xml_path))
                continue

            xcenter = xmin + (xmax - xmin) / 2
            ycenter = ymin + (ymax - ymin) / 2
            w = xmax - xmin
            h = ymax - ymin

            xcenter = round(xcenter / img_width, 6)
            ycenter = round(ycenter / img_height, 6)
            w = round(w / img_width, 6)
            h = round(h / img_height, 6)

            info = [str(i) for i in [class_index, xcenter, ycenter, w, h]]

            if index == 0:
                f.write(" ".join(info))
            else:
                f.write("\n" + " ".join(info))

    # copy image into save_images_path
    path_copy_to = os.path.join(save_images_path, img_path.split(os.sep)[-1])
    if os.path.exists(path_copy_to) is False:
        shutil.copyfile(img_path, path_copy_to)

def main(): class_dict = {"b": 1, "t": 2} with open(train_txt_path, "r") as r: train_file_names = [i for i in r.read().splitlines() if len(i.strip()) > 0] translate_info(train_file_names, save_file_root, class_dict, "train") with open(val_txt_path, "r") as r: val_file_names = [i for i in r.read().splitlines() if len(i.strip()) > 0] translate_info(val_file_names, save_file_root, class_dict, "val")

if name == "main": main()

Reference:

Train Custom Data

相关标签
About Me
XD
Goals determine what you are going to be.
Category
标签云
签证 BF16 DeepStream Clash Random CC 多进程 logger Animate VSCode Pickle Nginx UNIX OpenAI transformers Tracking 继承 Statistics TensorRT PDB 公式 Pandas 递归学习法 diffusers RGB Dataset Vmess Mixtral 强化学习 llama.cpp DeepSeek LLAMA Hotel C++ Datetime mmap Translation CEIR Template Crawler Ptyhon TTS Github Pillow 版权 Excel HaggingFace scipy FP32 VPN Domain Claude 净利润 FP8 Hungarian RAR Qwen2.5 GIT WAN 多线程 关于博主 Disk API FlashAttention PDF Heatmap 证件照 AI TensorFlow CTC Breakpoint 域名 MD5 报税 音频 Math 腾讯云 LLM Tiktoken Bin CUDA FP16 Color Conda Paddle SQLite 顶会 搞笑 SVR Google 飞书 算法题 XGBoost Base64 VGG-16 ModelScope v2ray 财报 Zip PIP Distillation Website HuggingFace Linux News Safetensors SQL Tensor Card ChatGPT 阿里云 Jetson Plate CAM Llama CLAP YOLO Attention FastAPI Django SAM Baidu Sklearn Agent TSV tar uwsgi Search uWSGI PyTorch Land GGML Gemma Data torchinfo Michelin Input Magnet Bipartite Windows Vim v0.dev Shortcut Markdown 图形思考法 Cloudreve NLTK Plotly NameSilo COCO InvalidArgumentError Video Use Freesound Image2Text Hilton QWEN Streamlit Qwen Permission Transformers Python LeetCode GPT4 Logo Augmentation Diagram Knowledge PyCharm Pytorch Docker 第一性原理 GoogLeNet Numpy SPIE OpenCV Git git hf Bitcoin Firewall OCR NLP Miniforge LoRA Jupyter Algorithm Web Quantization BeautifulSoup Review Password XML git-lfs tqdm Bert Qwen2 ResNet-50 Ubuntu Interview WebCrawler Proxy Anaconda CV LaTeX UI FP64 CSV BTC Paper ONNX JSON GPTQ Food IndexTTS2 Quantize printf EXCEL
站点统计

本站现有博文320篇,共被浏览756710

本站已经建立2421天!

热门文章
文章归档
回到顶部