EADST

YOLOv5: Data Preparation for Training

YOLOv5: Data Preparation for Training, from VOC Format to YOLO Format

First, split the data to train and val, and get txt files

import os
import random

train_percent = 0.95 xmlfilepath = 'bucket_v1/Annotations' txtsavepath = 'bucket_v1/ImageSets' total_xml = os.listdir(xmlfilepath)

num = len(total_xml) trainval = range(num) tr = int(num * train_percent) train = random.sample(trainval, tr)

ftrain = open('bucket_v1/ImageSets/Main/train.txt', 'w') fval = open('bucket_v1/ImageSets/Main/val.txt', 'w')

for i in trainval: name = total_xml[i][:-4] + '\n' if i in train: ftrain.write(name) else: fval.write(name)

Second, convert VOC format data (xml) to YOLO format data (txt)

import os
from tqdm import tqdm
from lxml import etree
import json
import shutil

voc_root = "/dfs/data/others/byolov5/dataset/bucket_v1" voc_version = "bucket_v1"

train_txt = "train.txt" val_txt = "val.txt" save_file_root = "/dfs/data/others/byolov5/dataset/yolo_data"

voc_images_path = os.path.join(voc_root, "JPEGImages") voc_xml_path = os.path.join(voc_root, "Annotations") train_txt_path = os.path.join(voc_root, "ImageSets", "Main", train_txt) val_txt_path = os.path.join(voc_root, "ImageSets", "Main", val_txt)

def parse_xml_to_dict(xml): if len(xml) == 0: return {xml.tag: xml.text} result = {} for child in xml: child_result = parse_xml_to_dict(child)
if child.tag != 'object': result[child.tag] = child_result[child.tag] else: if child.tag not in result:
result[child.tag] = [] result[child.tag].append(child_result[child.tag]) return {xml.tag: result}

def translate_info(file_names: list, save_root: str, class_dict: dict, train_val='train'): save_txt_path = os.path.join(save_root, train_val, "labels") if os.path.exists(save_txt_path) is False: os.makedirs(save_txt_path) save_images_path = os.path.join(save_root, train_val, "images") if os.path.exists(save_images_path) is False: os.makedirs(save_images_path)

for file in tqdm(file_names, desc="translate {} file...".format(train_val)):
    img_path = os.path.join(voc_images_path, file + ".jpg")
    assert os.path.exists(img_path), "file:{} not exist...".format(img_path)

    xml_path = os.path.join(voc_xml_path, file + ".xml")
    assert os.path.exists(xml_path), "file:{} not exist...".format(xml_path)

    # read xml
    with open(xml_path, encoding='UTF-8') as fid:
        xml_str = fid.read()
    xml = etree.fromstring(xml_str)
    data = parse_xml_to_dict(xml)["annotation"]
    img_height = int(data["size"]["height"])
    img_width = int(data["size"]["width"])
    # write object info into txt
    # assert "object" in data.keys(), "file: '{}' lack of object key.".format(xml_path)
    if "object" not in data.keys():
        print("Warning: in '{}' xml, there are no objects.".format(xml_path))
        continue

    with open(os.path.join(save_txt_path, file + ".txt"), "w") as f:
        for index, obj in enumerate(data["object"]):
            xmin = float(obj["bndbox"]["xmin"])
            xmax = float(obj["bndbox"]["xmax"])
            ymin = float(obj["bndbox"]["ymin"])
            ymax = float(obj["bndbox"]["ymax"])
            class_name = obj["name"]
            class_index = class_dict[class_name] - 1

            if xmax <= xmin or ymax <= ymin:
                print("Warning: in '{}' xml, there are some bbox w/h <=0".format(xml_path))
                continue

            xcenter = xmin + (xmax - xmin) / 2
            ycenter = ymin + (ymax - ymin) / 2
            w = xmax - xmin
            h = ymax - ymin

            xcenter = round(xcenter / img_width, 6)
            ycenter = round(ycenter / img_height, 6)
            w = round(w / img_width, 6)
            h = round(h / img_height, 6)

            info = [str(i) for i in [class_index, xcenter, ycenter, w, h]]

            if index == 0:
                f.write(" ".join(info))
            else:
                f.write("\n" + " ".join(info))

    # copy image into save_images_path
    path_copy_to = os.path.join(save_images_path, img_path.split(os.sep)[-1])
    if os.path.exists(path_copy_to) is False:
        shutil.copyfile(img_path, path_copy_to)

def main(): class_dict = {"b": 1, "t": 2} with open(train_txt_path, "r") as r: train_file_names = [i for i in r.read().splitlines() if len(i.strip()) > 0] translate_info(train_file_names, save_file_root, class_dict, "train") with open(val_txt_path, "r") as r: val_file_names = [i for i in r.read().splitlines() if len(i.strip()) > 0] translate_info(val_file_names, save_file_root, class_dict, "val")

if name == "main": main()

Reference:

Train Custom Data

相关标签
About Me
XD
Goals determine what you are going to be.
Category
标签云
站点统计

本站现有博文266篇,共被浏览440768

本站已经建立2019天!

热门文章
文章归档
回到顶部