EADST

FastAPI Deploy Qwen2.5

Here is the service code.

from fastapi import FastAPI, HTTPException, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import uvicorn
from typing import List, Dict, Optional
import asyncio
from concurrent.futures import ThreadPoolExecutor
import os
from datetime import datetime
import logging

# 设置日志
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

class ChatRequest(BaseModel):
    messages: List[Dict[str, str]]
    max_new_tokens: int = Field(default=512, ge=1, le=2048)
    temperature: float = Field(default=0.7, ge=0.0, le=2.0)
    top_p: float = Field(default=0.9, ge=0.0, le=1.0)
    repetition_penalty: float = Field(default=1.0, ge=0.0, le=2.0)
    top_k: int = Field(default=50, ge=0)
    num_beams: int = Field(default=1, ge=1)
    do_sample: bool = Field(default=True)

class ModelConfig(BaseModel):
    model_path: str = "/your_model_path/qwen2.5_3b/"
    gpu_id: Optional[int] = None
    max_batch_size: int = 32
    max_concurrent_requests: int = 10

    class Config:
        protected_namespaces = ()

class ModelService:
    _instance = None
    _lock = asyncio.Lock()

    @classmethod
    async def get_instance(cls, config: ModelConfig):
        async with cls._lock:
            if cls._instance is None:
                cls._instance = cls(config)
            return cls._instance

    def __init__(self, config: ModelConfig):
        if ModelService._instance is not None:
            raise Exception("This class is a singleton!")

        self.config = config

        # 获取实际可用的GPU ID
        if torch.cuda.is_available():
            cuda_visible_devices = os.environ.get('CUDA_VISIBLE_DEVICES')
            if cuda_visible_devices is not None:
                self.device = "cuda:0"
                logger.info(f"CUDA_VISIBLE_DEVICES is set to {cuda_visible_devices}")
            else:
                if config.gpu_id is not None and config.gpu_id < torch.cuda.device_count():
                    self.device = f"cuda:{config.gpu_id}"
                else:
                    self.device = "cuda:0"
        else:
            self.device = "cpu"

        logger.info(f"Using device: {self.device}")

        # 加载模型和tokenizer
        logger.info("Loading model and tokenizer...")
        try:
            if self.device == "cpu":
                device_map = "cpu"
            else:
                device_map = {"": self.device}

            self.model = AutoModelForCausalLM.from_pretrained(
                config.model_path,
                torch_dtype=torch.bfloat16 if 'cuda' in self.device else torch.float32,
                device_map=device_map,
                trust_remote_code=True
            )
            self.tokenizer = AutoTokenizer.from_pretrained(
                config.model_path,
                trust_remote_code=True
            )
            logger.info(f"Model is on device: {next(self.model.parameters()).device}")

        except Exception as e:
            logger.error(f"Error loading model: {str(e)}")
            raise

        logger.info("Model loaded successfully!")

        # 初始化线程池
        self.executor = ThreadPoolExecutor(max_workers=config.max_concurrent_requests)

        # 初始化请求队列
        self.request_queue = asyncio.Queue(maxsize=config.max_batch_size)

        # 启动异步处理任务
        self.task = asyncio.create_task(self._process_queue())

    async def _process_queue(self):
        """异步处理请求队列"""
        while True:
            batch = []
            try:
                while len(batch) < self.config.max_batch_size:
                    if not batch:
                        request, future = await self.request_queue.get()
                    else:
                        try:
                            request, future = self.request_queue.get_nowait()
                        except asyncio.QueueEmpty:
                            break
                    batch.append((request, future))

                if batch:
                    responses = await asyncio.get_event_loop().run_in_executor(
                        self.executor,
                        self._batch_generate,
                        [r[0] for r in batch]
                    )

                    for (_, future), response in zip(batch, responses):
                        if not future.done():
                            future.set_result(response)
            except Exception as e:
                logger.error(f"Error processing batch: {str(e)}")
                for _, future in batch:
                    if not future.done():
                        future.set_exception(e)
            finally:
                for _ in range(len(batch)):
                    self.request_queue.task_done()

    def _batch_generate(self, requests: List[ChatRequest]) -> List[str]:
        """批量生成回复"""
        try:
            texts = [
                self.tokenizer.apply_chat_template(
                    req.messages,
                    tokenize=False,
                    add_generation_prompt=True
                )
                for req in requests
            ]

            inputs = self.tokenizer(texts, return_tensors="pt", padding=True)
            inputs = {k: v.to(self.device) for k, v in inputs.items()}

            with torch.no_grad(), torch.inference_mode():
                generated_ids = self.model.generate(
                    **inputs,
                    max_new_tokens=max(r.max_new_tokens for r in requests),
                    temperature=requests[0].temperature,
                    top_p=requests[0].top_p,
                    repetition_penalty=requests[0].repetition_penalty,
                    top_k=requests[0].top_k,
                    num_beams=requests[0].num_beams,
                    do_sample=requests[0].do_sample,
                    pad_token_id=self.tokenizer.pad_token_id,
                    eos_token_id=self.tokenizer.eos_token_id
                )

            responses = []
            for i, output_ids in enumerate(generated_ids):
                new_tokens = output_ids[len(inputs['input_ids'][i]):]
                response = self.tokenizer.decode(new_tokens, skip_special_tokens=True)
                responses.append(response)

            return responses

        except Exception as e:
            logger.error(f"Error in batch generation: {str(e)}")
            raise

    async def generate(self, request: ChatRequest):
        """异步生成回复"""
        try:
            loop = asyncio.get_event_loop()
            future = loop.create_future()
            await self.request_queue.put((request, future))
            response = await future
            return response
        except Exception as e:
            logger.error(f"Error generating response: {str(e)}")
            raise

# 创建FastAPI应用
app = FastAPI(title="Qwen API Server")

# 添加CORS中间件
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# 配置
model_config = ModelConfig()
model_service = None

@app.on_event("startup")
async def startup_event():
    global model_service
    model_service = await ModelService.get_instance(model_config)

@app.post("/chat")
async def chat(request: ChatRequest):
    try:
        response = await model_service.generate(request)
        return {
            "status": "success",
            "response": response,
            "timestamp": datetime.now().isoformat()
        }
    except Exception as e:
        logger.error(f"Error in chat endpoint: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/health")
async def health_check():
    return {
        "status": "healthy",
        "gpu_id": model_config.gpu_id,
        "device": model_service.device if model_service else "not initialized"
    }

if __name__ == "__main__":
    uvicorn.run(
        app, 
        host="0.0.0.0", 
        port=8000,
        log_level="info"
    )

Here is the nohup command line for service.

nohup bash -c 'CUDA_VISIBLE_DEVICES=2 python app.py > app.log 2>&1' &

Here is the request code.

import requests

url = "http://10.110.10.110:8000/chat" #your service IP address data = { "messages": [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Hello, how are you?"} ], "max_new_tokens": 2048, "temperature": 0.7, "top_p": 0.8, "top_k": 20, "repetition_penalty": 1.05, "do_sample": True }

response = requests.post(url, json=data) print(response.json())

相关标签
About Me
XD
Goals determine what you are going to be.
Category
标签云
Docker Numpy IndexTTS2 Jupyter Nginx Review LeetCode FP32 Llama Plate AI Land LLAMA uwsgi Conda HaggingFace Agent Hilton 递归学习法 净利润 Pytorch logger Markdown Baidu ChatGPT Augmentation BTC 版权 diffusers torchinfo Video SAM Breakpoint GPTQ tqdm NLTK FastAPI Paper NameSilo RAR BF16 v2ray HuggingFace git XGBoost LoRA Jetson PyTorch PyCharm Pillow Miniforge FlashAttention Magnet 域名 Plotly Claude 报税 飞书 RGB Excel 多线程 ONNX Pickle Python Qwen2.5 JSON PIP Qwen2 SPIE OCR CTC Tensor Github UNIX CEIR XML FP8 Vmess Distillation 算法题 GoogLeNet Git SQLite OpenAI WAN CSV Django CC 财报 CAM 音频 Diagram Gemma ModelScope UI Bert 阿里云 Permission Shortcut 腾讯云 API Heatmap Statistics 第一性原理 C++ Color YOLO Bin TTS Password CLAP Data VGG-16 Proxy Web Website NLP PDB Ubuntu Google transformers Sklearn Animate Transformers Attention Windows Tiktoken MD5 Input Anaconda printf Crawler git-lfs Random Datetime Quantize CUDA uWSGI Translation Algorithm v0.dev PDF Use Vim ResNet-50 Disk COCO TensorFlow FP16 GIT Quantization 关于博主 llama.cpp Paddle QWEN Cloudreve InvalidArgumentError VPN Michelin CV Hotel GGML Math scipy SVR Food Linux Logo LLM WebCrawler Template hf Hungarian Image2Text Clash Interview mmap Bitcoin FP64 继承 Firewall Tracking VSCode OpenCV tar 签证 DeepStream Streamlit LaTeX Safetensors Bipartite Mixtral TSV TensorRT 图形思考法 Freesound DeepSeek Dataset BeautifulSoup EXCEL GPT4 Base64 搞笑 证件照 Card Ptyhon SQL 多进程 公式 Pandas Knowledge Zip Qwen Domain
站点统计

本站现有博文316篇,共被浏览746630

本站已经建立2394天!

热门文章
文章归档
回到顶部