EADST

Review: H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models

Title: [NeurIPS'23] H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models.

Rating: Average, Not Recommended

Paper:H2O Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models

Code:https://github.com/FMInference/H2O

Review:

The paper introduces an approach to reduce KV cache in large language models by selecting the top k values as the main KV Cache for the following computing. However, the presentation of Algorithm 1 is complex and lacks clarity, for example, the element 'Gi' not being mentioned in the paper. This obscurity makes it difficult to understand the main idea. Further, the actual method, as revealed by the code, is disappointing, at least for LLAMA. It merely involves applying softmax to the QK matrix for updated scores and then selecting the top k indices for the mask update. This approach seems overly simplistic and does not match the expected sophistication of the proposed solution.

该论文提出了一种减少大型语言模型中KV缓存的方法,通过选择计算中的前k个数值作为主要KV缓存进行后续的计算。然而,算法1的呈现复杂且缺乏清晰度,比如元素'Gi'未提及,使得算法难以理解。进一步查看其代码,实际方法令人失望,至少对于LLAMA模型应用来讲。它只是对QK矩阵应用softmax得到更新的分数,然后选择前k个索引更新掩码。这种方法过于简单,并未达到预期的复杂性和提出的解决方案的深度。

modify_llama.py def local_heavy_hitter_mask

def local_heavy_hitter_mask(attn_weights, heavy_budget):
    # 获取注意力权重的数据类型和序列长度
    dtype_attn_weights = attn_weights.dtype
    seq_length = attn_weights.shape[-1]
    padding_length = 0

    # 对注意力权重应用softmax函数以获得正规化的注意力分布
    tmp_attn = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(dtype_attn_weights)

    # 计算前heavy_budget个令牌的累积注意力分数
    accumulated_attention_score = torch.sum(tmp_attn[:,:,padding_length:heavy_budget+padding_length,:], dim=-2) # (head, keys)
    # 对超出预算的部分分数置零
    accumulated_attention_score[:,:,heavy_budget+padding_length:] = 0
    accumulated_attention_score[:,:,:padding_length] = 0

    # 初始化一个与注意力权重形状相同的零掩码张量
    mask_bottom = torch.zeros_like(attn_weights, dtype=torch.bool)
    # 在掩码中标记重击者区域为True
    mask_bottom[:,:, padding_length:heavy_budget+padding_length, padding_length:heavy_budget+padding_length] = True

    # 遍历序列中的每个令牌
    for token_index in range(heavy_budget+padding_length, seq_length):
        # 计算当前令牌的softmax注意力权重
        tmp_attn_index = nn.functional.softmax(attn_weights[:,:,token_index,:], dim=-1, dtype=torch.float32).to(dtype_attn_weights)
        # 选择前heavy_budget-1个最高的累积注意力分数
        _, tmp_topk_index = accumulated_attention_score.topk(k=heavy_budget-1, dim=-1)
        # 创建当前令牌的零掩码张量
        zeros_index = torch.zeros_like(tmp_attn_index, dtype=torch.bool)
        # 更新当前令牌的掩码,标记最高分数的位置
        mask_bottom_index = zeros_index.scatter(-1, tmp_topk_index, True) # (head, keys)
        mask_bottom_index[:,:, token_index] = True

        # 更新总掩码,将当前令牌的掩码信息添加进去
        mask_bottom[:,:,token_index,:] = mask_bottom_index
        # 更新累积注意力分数
        accumulated_attention_score += tmp_attn_index
        accumulated_attention_score = accumulated_attention_score * mask_bottom_index

    # 返回计算得到的掩码
    return mask_bottom
相关标签
About Me
XD
Goals determine what you are going to be.
Category
标签云
NameSilo 腾讯云 Safetensors HaggingFace CUDA Logo Cloudreve BTC XGBoost Search Bitcoin Paddle Crawler CLAP SQL Animate Review GPTQ API Conda llama.cpp 图形思考法 tar Plotly NLTK GoogLeNet FP32 XML CV Google Gemma Password uWSGI Jupyter Web Template Statistics 财报 Domain Python FastAPI Github Docker GPT4 Clash Input Disk WAN Quantize 域名 TensorRT Hilton GGML DeepStream OpenCV 算法题 Attention scipy Zip Distillation Vim SPIE Claude Django Bipartite printf Quantization logger 关于博主 Land Anaconda Food 报税 Algorithm Datetime News Excel Baidu AI Magnet Windows 公式 净利润 BF16 Markdown SVR Random Breakpoint Pickle VPN Image2Text LeetCode v2ray C++ PIP 第一性原理 Data Llama Video InvalidArgumentError 飞书 Hotel JSON EXCEL MD5 递归学习法 Use Qwen2.5 Heatmap ChatGPT ResNet-50 Streamlit 继承 SAM 音频 Shortcut Card Tracking IndexTTS2 Ptyhon NLP git PDF Numpy HuggingFace diffusers 顶会 ModelScope ONNX PyTorch transformers 签证 v0.dev Proxy tqdm COCO VSCode Michelin Git Pandas DeepSeek GIT Freesound QWEN OpenAI CC Qwen LLAMA Linux Mixtral Diagram Agent TensorFlow uwsgi 阿里云 多线程 Bin FlashAttention TTS Pytorch OCR Augmentation TSV Knowledge Sklearn VGG-16 Bert CTC hf Miniforge 多进程 LoRA Interview Ubuntu 强化学习 CAM UI 证件照 Tiktoken BeautifulSoup FP64 Plate Qwen2 FP8 mmap Vmess Transformers Pillow CSV Jetson Nginx Paper torchinfo Tensor 搞笑 Base64 SQLite RGB PDB WebCrawler YOLO UNIX Hungarian Dataset git-lfs Website PyCharm 版权 Permission LLM RAR CEIR LaTeX Math Color FP16 Firewall Translation
站点统计

本站现有博文320篇,共被浏览759225

本站已经建立2427天!

热门文章
文章归档
回到顶部