EADST

Attention Net with Pytorch

Attention net may be put after the LSTM processing in the NLP task.

import torch
import torch.nn as nn
from torch.autograd import Variable

# attention layer
def attention_net(lstm_output):
    hidden_size = 300
    w_omega = Variable(torch.zeros(hidden_size, 2))
    u_omega = Variable(torch.zeros(2))
    output_reshape = torch.Tensor.reshape(lstm_output, [-1, hidden_size])
    u = torch.tanh(torch.mm(output_reshape, w_omega))
    attn_hidden_layer = torch.mm(u, torch.Tensor.reshape(u_omega, [-1, 1]))
    sequence_length = lstm_output.size()[1]
    alphas = nn.functional.softmax(attn_hidden_layer, dim=1)
    alphas_reshape = torch.Tensor.reshape(alphas, [-1, sequence_length, 1])
    state = lstm_output.permute(1, 0, 2)
    attn_output = torch.sum(state * alphas_reshape, 1)
    return attn_output


# add attention layer after lstm
if attetion_mode == True:
    lstm_out = lstm_out.permute(1, 0, 2)
    lstm_out = attention_net(lstm_out)

相关标签
About Me
XD
Goals determine what you are going to be.
Category
标签云
站点统计

本站现有博文266篇,共被浏览440615

本站已经建立2019天!

热门文章
文章归档
回到顶部