EADST

Python 多线程 vs 多进程对比

🎯 背景

你是否也遇到过这种情况:

明明 CPU 是多核的,代码也用了 ThreadPoolExecutor 开了很多线程,结果速度不仅没有变快,反而变慢了……

最近,我就踩了这个坑:处理 GGUF 模型文件中的张量数据时,原始多线程版本耗时 300 分钟,而换成多进程后,只用了 3 分钟,性能差距高达 100 倍


🧱 为什么多线程在 Python 中这么慢?

罪魁祸首就是 Python 的 GIL(全局解释器锁)

GIL 是什么?

在 CPython(最常用的 Python 解释器)中,GIL 是一个互斥锁,用于保证任何时刻只有一个线程能执行 Python 字节码。

GIL 的影响:

  • ✅ I/O 密集型任务(如网络请求、文件读写):线程会在等待时释放 GIL,效率还不错。
  • ❌ 计算密集型任务(如矩阵计算、数据转换):所有线程争抢 GIL,根本没法并行,性能下降!

✅ 正确做法:使用多进程

GIL 只存在于单个进程中,多进程意味着每个子进程有自己的 GIL,可以在多个 CPU 核心上并行运行。


🧪 实战代码对比


🚫 多线程版本(ThreadPoolExecutor)

from concurrent.futures import ThreadPoolExecutor, as_completed
from tqdm import tqdm

def process_tensor(tensor):
    # 模拟计算密集型任务
    return tensor.name, tensor.data.sum()

if __name__ == '__main__':
    tasks_to_process = [...]  # 张量任务列表

    results = []
    with ThreadPoolExecutor(max_workers=8) as executor:
        futures = {
            executor.submit(process_tensor, t): t.name
            for t in tasks_to_process
        }

        for future in tqdm(as_completed(futures), total=len(futures), desc="Threading"):
            results.append(future.result())

⏱️ 耗时约 300 分钟,CPU 利用率低。


🚀 多进程版本(ProcessPoolExecutor)

from concurrent.futures import ProcessPoolExecutor, as_completed
from tqdm import tqdm

def process_tensor(tensor):
    return tensor.name, tensor.data.sum()

if __name__ == '__main__':
    tasks_to_process = [...]  # 张量任务列表

    results = []
    with ProcessPoolExecutor() as executor:  # 默认使用所有核心
        futures = {
            executor.submit(process_tensor, t): t.name
            for t in tasks_to_process
        }

        for future in tqdm(as_completed(futures), total=len(futures), desc="Multiprocessing"):
            results.append(future.result())

耗时仅 3 分钟,CPU 多核并行利用率高。


✅ 结果输出(通用)

for name, result in results:
    print(f"{name}: {result}")

📊 对比总结

| 类型  | 实现方式                | 预计耗时     | 核心利用率        |
| 多线程 | ThreadPoolExecutor  | \~300 分钟 | ❌ 低,受 GIL 限制 |
| 多进程 | ProcessPoolExecutor | \~3 分钟   | ✅ 高,真并行      |

📌 何时用线程?何时用进程?

| 任务类型    | 推荐方式  | 原因             |
| CPU 密集型 | ✅ 多进程 | 避免 GIL,真正并行    |
| I/O 密集型 | ✅ 多线程 | 阻塞时释放 GIL,提高吞吐 |

🛠️ 小贴士

  • tqdm(as_completed(...)) 让你轻松跟踪任务完成进度。
  • 多进程任务函数必须能被 Pickle 序列化。
  • 若需支持错误捕获、失败重试、进度恢复,可结合日志模块扩展。

🧠 最后总结

Python 并发并不神秘,关键在于:

  • 辨别任务类型(CPU-bound vs I/O-bound)
  • 选对模型(Threading vs Multiprocessing)

一旦用对方式,性能可不是提升一点,而是飞跃几十倍、甚至百倍!

相关标签
About Me
XD
Goals determine what you are going to be.
Category
标签云
站点统计

本站现有博文297篇,共被浏览648079

本站已经建立2227天!

热门文章
文章归档
回到顶部