EADST

Print Transformers Pytorch Model Information

import os
import re
import torch
from safetensors import safe_open
from safetensors.torch import load_file
import glob
from collections import defaultdict
import numpy as np

model_dir = "/dfs/data/model_path_folder/"

def inspect_model_weights(directory_path):
    """
    检索文件夹中所有的bin或safetensors文件并打印模型权重信息

    参数:
        directory_path (str): 包含模型文件的文件夹路径
    """
    # 查找所有bin和safetensors文件
    bin_files = glob.glob(os.path.join(directory_path, "*.bin"))
    safetensors_files = glob.glob(os.path.join(directory_path, "*.safetensors"))

    all_files = bin_files + safetensors_files

    if not all_files:
        print(f"在 {directory_path} 中没有找到bin或safetensors文件")
        return

    print(f"找到 {len(all_files)} 个模型文件:")
    for idx, file_path in enumerate(all_files):
        print(f"{idx+1}. {os.path.basename(file_path)}")

    total_size = 0
    param_count = 0
    layer_stats = defaultdict(int)
    tensor_types = defaultdict(int)
    shape_info = defaultdict(list)

    # 处理每个文件
    for file_path in all_files:
        file_size = os.path.getsize(file_path) / (1024 * 1024)  # MB
        total_size += file_size

        print(f"\n检查文件: {os.path.basename(file_path)} ({file_size:.2f} MB)")

        # 根据文件扩展名加载权重
        if file_path.endswith('.bin'):
            try:
                weights = torch.load(file_path, map_location='cpu')
            except Exception as e:
                print(f"  无法加载 {file_path}: {e}")
                continue
        else:  # safetensors
            try:
                weights = load_file(file_path)
            except Exception as e:
                print(f"  无法加载 {file_path}: {e}")
                continue

        # 分析权重
        print(f"  包含 {len(weights)} 个张量")
        for key, tensor in weights.items():
            # 统计参数数量
            num_params = np.prod(tensor.shape)
            param_count += num_params

            # 统计层类型
            layer_type = "other"
            if "attention" in key or "attn" in key:
                layer_type = "attention"
            elif "mlp" in key or "ffn" in key:
                layer_type = "feed_forward"
            elif "embed" in key:
                layer_type = "embedding"
            elif "norm" in key or "ln" in key:
                layer_type = "normalization"
            layer_stats[layer_type] += num_params

            # 统计张量类型
            tensor_types[tensor.dtype] += num_params

            # 记录形状信息
            shape_str = str(tensor.shape)
            shape_info[shape_str].append(key)

            # 打印详细信息(前10个张量)
            if len(shape_info) <= 10 or num_params > 1_000_000:
                print(f"  - {key}: 形状={tensor.shape}, 类型={tensor.dtype}, 参数数={num_params:,}")

    # 打印汇总信息
    print("\n模型权重汇总:")
    print(f"总文件大小: {total_size:.2f} MB")
    print(f"总参数数量: {param_count:,}")

    print("\n按层类型划分的参数:")
    for layer_type, count in layer_stats.items():
        percentage = (count / param_count) * 100
        print(f"  {layer_type}: {count:,} 参数 ({percentage:.2f}%)")

    print("\n张量数据类型分布:")
    for dtype, count in tensor_types.items():
        percentage = (count / param_count) * 100
        print(f"  {dtype}: {count:,} 参数 ({percentage:.2f}%)")

    print("\n常见张量形状:")
    sorted_shapes = sorted(shape_info.items(), key=lambda x: np.prod(eval(x[0])), reverse=True)
    for i, (shape, keys) in enumerate(sorted_shapes[:10]):
        num_params = np.prod(eval(shape))
        percentage = (num_params * len(keys) / param_count) * 100
        print(f"  {shape}: {len(keys)} 个张量, 每个 {num_params:,} 参数 (总共占 {percentage:.2f}%)")
        if i < 3:  # 只显示前3种最常见形状的示例
            print(f"    例如: {', '.join(keys[:3])}" + ("..." if len(keys) > 3 else ""))

def main():
    # model_dir = input("请输入模型文件夹路径: ")
    inspect_model_weights(model_dir)

if __name__ == "__main__":
    main()
相关标签
About Me
XD
Goals determine what you are going to be.
Category
标签云
站点统计

本站现有博文287篇,共被浏览558200

本站已经建立2144天!

热门文章
文章归档
回到顶部