EADST

Print Transformers Pytorch Model Information

import os
import re
import torch
from safetensors import safe_open
from safetensors.torch import load_file
import glob
from collections import defaultdict
import numpy as np

model_dir = "/dfs/data/model_path_folder/"

def inspect_model_weights(directory_path):
    """
    检索文件夹中所有的bin或safetensors文件并打印模型权重信息

    参数:
        directory_path (str): 包含模型文件的文件夹路径
    """
    # 查找所有bin和safetensors文件
    bin_files = glob.glob(os.path.join(directory_path, "*.bin"))
    safetensors_files = glob.glob(os.path.join(directory_path, "*.safetensors"))

    all_files = bin_files + safetensors_files

    if not all_files:
        print(f"在 {directory_path} 中没有找到bin或safetensors文件")
        return

    print(f"找到 {len(all_files)} 个模型文件:")
    for idx, file_path in enumerate(all_files):
        print(f"{idx+1}. {os.path.basename(file_path)}")

    total_size = 0
    param_count = 0
    layer_stats = defaultdict(int)
    tensor_types = defaultdict(int)
    shape_info = defaultdict(list)

    # 处理每个文件
    for file_path in all_files:
        file_size = os.path.getsize(file_path) / (1024 * 1024)  # MB
        total_size += file_size

        print(f"\n检查文件: {os.path.basename(file_path)} ({file_size:.2f} MB)")

        # 根据文件扩展名加载权重
        if file_path.endswith('.bin'):
            try:
                weights = torch.load(file_path, map_location='cpu')
            except Exception as e:
                print(f"  无法加载 {file_path}: {e}")
                continue
        else:  # safetensors
            try:
                weights = load_file(file_path)
            except Exception as e:
                print(f"  无法加载 {file_path}: {e}")
                continue

        # 分析权重
        print(f"  包含 {len(weights)} 个张量")
        for key, tensor in weights.items():
            # 统计参数数量
            num_params = np.prod(tensor.shape)
            param_count += num_params

            # 统计层类型
            layer_type = "other"
            if "attention" in key or "attn" in key:
                layer_type = "attention"
            elif "mlp" in key or "ffn" in key:
                layer_type = "feed_forward"
            elif "embed" in key:
                layer_type = "embedding"
            elif "norm" in key or "ln" in key:
                layer_type = "normalization"
            layer_stats[layer_type] += num_params

            # 统计张量类型
            tensor_types[tensor.dtype] += num_params

            # 记录形状信息
            shape_str = str(tensor.shape)
            shape_info[shape_str].append(key)

            # 打印详细信息(前10个张量)
            if len(shape_info) <= 10 or num_params > 1_000_000:
                print(f"  - {key}: 形状={tensor.shape}, 类型={tensor.dtype}, 参数数={num_params:,}")

    # 打印汇总信息
    print("\n模型权重汇总:")
    print(f"总文件大小: {total_size:.2f} MB")
    print(f"总参数数量: {param_count:,}")

    print("\n按层类型划分的参数:")
    for layer_type, count in layer_stats.items():
        percentage = (count / param_count) * 100
        print(f"  {layer_type}: {count:,} 参数 ({percentage:.2f}%)")

    print("\n张量数据类型分布:")
    for dtype, count in tensor_types.items():
        percentage = (count / param_count) * 100
        print(f"  {dtype}: {count:,} 参数 ({percentage:.2f}%)")

    print("\n常见张量形状:")
    sorted_shapes = sorted(shape_info.items(), key=lambda x: np.prod(eval(x[0])), reverse=True)
    for i, (shape, keys) in enumerate(sorted_shapes[:10]):
        num_params = np.prod(eval(shape))
        percentage = (num_params * len(keys) / param_count) * 100
        print(f"  {shape}: {len(keys)} 个张量, 每个 {num_params:,} 参数 (总共占 {percentage:.2f}%)")
        if i < 3:  # 只显示前3种最常见形状的示例
            print(f"    例如: {', '.join(keys[:3])}" + ("..." if len(keys) > 3 else ""))

def main():
    # model_dir = input("请输入模型文件夹路径: ")
    inspect_model_weights(model_dir)

if __name__ == "__main__":
    main()
相关标签
About Me
XD
Goals determine what you are going to be.
Category
标签云
Use 签证 SQL Cloudreve Llama TSV FP8 PyTorch Statistics IndexTTS2 YOLO WebCrawler Qwen2 顶会 Mixtral Google 搞笑 Magnet Bert Algorithm Password FP16 Hotel diffusers Datetime GPTQ UI v0.dev Card EXCEL Windows FlashAttention 图形思考法 v2ray ONNX DeepSeek Data Git ModelScope Random Web Docker mmap Qwen Knowledge XGBoost Tensor 阿里云 GIT Markdown LLM Excel LaTeX Claude 多进程 算法题 Ptyhon Bitcoin 证件照 PIP hf Ubuntu C++ NameSilo uWSGI LoRA VGG-16 BTC scipy 公式 VSCode Distillation SVR GGML PyCharm Bipartite 递归学习法 VPN Paper 报税 Jupyter Translation NLTK TTS Gemma Disk SPIE git 音频 OpenCV Vmess Streamlit Firewall Miniforge CTC OpenAI Review Plate CV Image2Text logger Baidu Vim Pickle QWEN PDF Sklearn BF16 Python WAN AI Interview Transformers tar torchinfo CUDA GPT4 LLAMA Math CLAP tqdm Input Diagram RGB Freesound Search Michelin Nginx Jetson PDB Conda Base64 Augmentation NLP Website Proxy Domain 版权 FastAPI Safetensors Django Template Numpy printf CAM CC SQLite Linux Logo FP32 InvalidArgumentError Quantization 继承 Clash Color Pytorch 飞书 Anaconda FP64 关于博主 llama.cpp API 第一性原理 transformers Pillow UNIX Dataset XML CSV Tiktoken JSON HaggingFace Attention Zip Quantize Land uwsgi Heatmap RAR Animate COCO Breakpoint Tracking TensorRT Agent HuggingFace git-lfs Paddle 财报 SAM Bin Hilton Hungarian GoogLeNet TensorFlow LeetCode Plotly Github DeepStream Pandas ResNet-50 多线程 Crawler 净利润 Qwen2.5 ChatGPT CEIR MD5 Food Permission OCR BeautifulSoup Video Shortcut 域名 腾讯云
站点统计

本站现有博文318篇,共被浏览748938

本站已经建立2400天!

热门文章
文章归档
回到顶部