EADST

Print Transformers Pytorch Model Information

import os
import re
import torch
from safetensors import safe_open
from safetensors.torch import load_file
import glob
from collections import defaultdict
import numpy as np

model_dir = "/dfs/data/model_path_folder/"

def inspect_model_weights(directory_path):
    """
    检索文件夹中所有的bin或safetensors文件并打印模型权重信息

    参数:
        directory_path (str): 包含模型文件的文件夹路径
    """
    # 查找所有bin和safetensors文件
    bin_files = glob.glob(os.path.join(directory_path, "*.bin"))
    safetensors_files = glob.glob(os.path.join(directory_path, "*.safetensors"))

    all_files = bin_files + safetensors_files

    if not all_files:
        print(f"在 {directory_path} 中没有找到bin或safetensors文件")
        return

    print(f"找到 {len(all_files)} 个模型文件:")
    for idx, file_path in enumerate(all_files):
        print(f"{idx+1}. {os.path.basename(file_path)}")

    total_size = 0
    param_count = 0
    layer_stats = defaultdict(int)
    tensor_types = defaultdict(int)
    shape_info = defaultdict(list)

    # 处理每个文件
    for file_path in all_files:
        file_size = os.path.getsize(file_path) / (1024 * 1024)  # MB
        total_size += file_size

        print(f"\n检查文件: {os.path.basename(file_path)} ({file_size:.2f} MB)")

        # 根据文件扩展名加载权重
        if file_path.endswith('.bin'):
            try:
                weights = torch.load(file_path, map_location='cpu')
            except Exception as e:
                print(f"  无法加载 {file_path}: {e}")
                continue
        else:  # safetensors
            try:
                weights = load_file(file_path)
            except Exception as e:
                print(f"  无法加载 {file_path}: {e}")
                continue

        # 分析权重
        print(f"  包含 {len(weights)} 个张量")
        for key, tensor in weights.items():
            # 统计参数数量
            num_params = np.prod(tensor.shape)
            param_count += num_params

            # 统计层类型
            layer_type = "other"
            if "attention" in key or "attn" in key:
                layer_type = "attention"
            elif "mlp" in key or "ffn" in key:
                layer_type = "feed_forward"
            elif "embed" in key:
                layer_type = "embedding"
            elif "norm" in key or "ln" in key:
                layer_type = "normalization"
            layer_stats[layer_type] += num_params

            # 统计张量类型
            tensor_types[tensor.dtype] += num_params

            # 记录形状信息
            shape_str = str(tensor.shape)
            shape_info[shape_str].append(key)

            # 打印详细信息(前10个张量)
            if len(shape_info) <= 10 or num_params > 1_000_000:
                print(f"  - {key}: 形状={tensor.shape}, 类型={tensor.dtype}, 参数数={num_params:,}")

    # 打印汇总信息
    print("\n模型权重汇总:")
    print(f"总文件大小: {total_size:.2f} MB")
    print(f"总参数数量: {param_count:,}")

    print("\n按层类型划分的参数:")
    for layer_type, count in layer_stats.items():
        percentage = (count / param_count) * 100
        print(f"  {layer_type}: {count:,} 参数 ({percentage:.2f}%)")

    print("\n张量数据类型分布:")
    for dtype, count in tensor_types.items():
        percentage = (count / param_count) * 100
        print(f"  {dtype}: {count:,} 参数 ({percentage:.2f}%)")

    print("\n常见张量形状:")
    sorted_shapes = sorted(shape_info.items(), key=lambda x: np.prod(eval(x[0])), reverse=True)
    for i, (shape, keys) in enumerate(sorted_shapes[:10]):
        num_params = np.prod(eval(shape))
        percentage = (num_params * len(keys) / param_count) * 100
        print(f"  {shape}: {len(keys)} 个张量, 每个 {num_params:,} 参数 (总共占 {percentage:.2f}%)")
        if i < 3:  # 只显示前3种最常见形状的示例
            print(f"    例如: {', '.join(keys[:3])}" + ("..." if len(keys) > 3 else ""))

def main():
    # model_dir = input("请输入模型文件夹路径: ")
    inspect_model_weights(model_dir)

if __name__ == "__main__":
    main()
相关标签
About Me
XD
Goals determine what you are going to be.
Category
标签云
Plotly uWSGI ONNX SAM 多线程 QWEN Base64 签证 NLTK Use CUDA GIT Statistics FP64 证件照 Google Tiktoken Bipartite Bert Algorithm git 算法题 OpenAI TensorRT VSCode 图形思考法 Distillation Logo Hilton Markdown UNIX Domain Knowledge JSON git-lfs UI GPT4 Attention 强化学习 DeepSeek Translation Mixtral CSV Datetime Web Python Ptyhon FP16 Card Linux logger Transformers WAN ChatGPT Miniforge EXCEL InvalidArgumentError Password transformers XML Agent FlashAttention v2ray 阿里云 CTC News Windows Docker Excel COCO LLM Disk Tensor SQL Bin 云服务器 Zip LeetCode TSV Color Vim Numpy LaTeX GPTQ Random Michelin CLAP llama.cpp tqdm LoRA Cloudreve PDB Pytorch GoogLeNet PDF 搞笑 HaggingFace Permission OpenCV Claude Search Pillow API Review ResNet-50 Food Django 域名 Magnet Animate Clash Pandas NLP Hotel 版权 BeautifulSoup torchinfo SVR 第一性原理 财报 Math Qwen2 Sklearn VPN Shortcut FP8 TTS Quantize BTC Input RAR Proxy Bitcoin v0.dev Heatmap Qwen2.5 Breakpoint Tracking Vmess WebCrawler 飞书 BF16 CV Quantization OCR IndexTTS2 Crawler SQLite C++ Video Firewall VGG-16 继承 音频 Freesound Data Image2Text Augmentation Git FastAPI Nginx AI LLAMA PIP Github Dataset Baidu Hungarian scipy SPIE DeepStream Anaconda Plate 净利润 Land PyTorch Safetensors hf 多进程 Paper Website Jupyter Pickle Conda 顶会 HuggingFace CC ModelScope RGB Llama mmap Qwen YOLO 公式 Paddle CEIR Gemma Diagram diffusers Streamlit Interview 报税 关于博主 XGBoost NameSilo PyCharm FP32 腾讯云 Template uwsgi TensorFlow printf GGML tar Ubuntu MD5 CAM 递归学习法 Jetson
站点统计

本站现有博文321篇,共被浏览764588

本站已经建立2442天!

热门文章
文章归档
回到顶部