EADST

llama.cpp: Definations of Q2_K, Q3_K, Q4_K, Q5_K, Q6_K, and Q8_K Structures

The source code from llama.cpp /ggml-quants.c includes detailed definitions of various quantization structures used in neural networks and computational models. These structures, named Q2_K, Q3_K, Q4_K, Q5_K, Q6_K, and Q8_K, are designed for efficient representation and processing of weights in a quantized format, reducing memory footprint while maintaining acceptable levels of accuracy.

//
// Super-block quantization structures
//

// Define the super-block size based on a preprocessor directive. 
// This affects the size of quantization blocks and related arrays.
#ifdef GGML_QKK_64
#define QK_K 64
#define K_SCALE_SIZE 4
#else
#define QK_K 256
#define K_SCALE_SIZE 12
#endif

// 2-bit quantization structure
// Each weight is represented as x = a * q + b, where a is the scale and b is the minimum value.
// The structure is divided into 16 blocks of 16 elements each, leading to 2.625 bits per weight.

// When QK_K = 256, then scales = 16 bytes, qs = 64 bytes, d = 2 bytes, dmin = 2 bytes. The total is 84 bytes = 84 * 8  bits = 672 bits, so have 672 bits / 256 = 2.625 (bpw) bits per weight.

typedef struct {
    uint8_t scales[QK_K/16];    // Scales and minimums, quantized using 4 bits.
    uint8_t qs[QK_K/4];         // Quantized values.
    ggml_fp16_t d;              // Super-block scale for quantized scales.
    ggml_fp16_t dmin;           // Super-block scale for quantized minimums.
} block_q2_K;
static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding");

// 3-bit quantization structure
// Weights are represented as x = a * q, using only the scale factor a.
// Divided into 16 blocks of 16 elements each, this achieves 3.4375 bits per weight.
#ifdef GGML_QKK_64
typedef struct {
    uint8_t hmask[QK_K/8];    // High bit of the quantized values.
    uint8_t qs[QK_K/4];       // Low 2 bits of the quantized values.
    uint8_t scales[2];        // Scale values.
    ggml_fp16_t d;            // Super-block scale.
} block_q3_K;
static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + 2, "wrong q3_K block size/padding");
#else

// When QK_K = 256, then hmask= 32 bytes, qs = 64 bytes, scales = 12 bytes, d = 2 bytes. The total is 110 bytes = 110 * 8  bits = 880 bits, so we have 880 bits / 256 = 3.4375 (bpw) bits per weight.

typedef struct {
    uint8_t hmask[QK_K/8];    // High bit of the quantized values.
    uint8_t qs[QK_K/4];       // Low 2 bits of the quantized values.
    uint8_t scales[12];       // Scales, quantized with 6 bits.
    ggml_fp16_t d;            // Super-block scale.
} block_q3_K;
static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + 12, "wrong q3_K block size/padding");
#endif

// 4-bit quantization structure
// Weights are again represented as x = a * q + b.
// The structure is divided into 8 blocks of 32 elements each, achieving 4.5 bits per weight.
#ifdef GGML_QKK_64
typedef struct {
    ggml_fp16_t d[2];         // Super-block scales/mins.
    uint8_t scales[2];        // 4-bit block scales/mins.
    uint8_t qs[QK_K/2];       // 4-bit quantized values.
} block_q4_K;
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + QK_K/2 + 2, "wrong q4_K block size/padding");
#else
typedef struct {
    ggml_fp16_t d;            // Super-block scale for quantized scales.
    ggml_fp16_t dmin;         // Super-block scale for quantized mins.
    uint8_t scales[K_SCALE_SIZE]; // Scales and mins, quantized with 6 bits.
    uint8_t qs[QK_K/2];       // 4-bit quantized values.
} block_q4_K;
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2, "wrong q4_K block size/padding");
#endif

// 5-bit quantization structure
// Weights are represented as x = a * q + b.
// The structure is divided into 8 blocks of 32 elements each, achieving 5.5 bits per weight.
#ifdef GGML_QKK_64
typedef struct {
    ggml_fp16_t d;            // Super-block scale.
    int8_t  scales[QK_K/16];  // 8-bit block scales.
    uint8_t qh[QK_K/8];       // High bit of the quantized values.
    uint8_t qs[QK_K/2];       // Low 4 bits of the quantized values.
} block_q5_K;
static_assert(sizeof(block_q5_K) == sizeof(ggml_fp16_t) + QK_K/2 + QK_K/8 + QK_K/16, "wrong q5_K block size/padding");
#else
typedef struct {
    ggml_fp16_t d;            // Super-block scale for quantized scales.
    ggml_fp16_t dmin;         // Super-block scale for quantized mins.
    uint8_t scales[K_SCALE_SIZE]; // Scales and mins, quantized with 6 bits.
    uint8_t qh[QK_K/8];       // High bit of the quantized values.
    uint8_t qs[QK_K/2];       // Low 4 bits of the quantized values.
} block_q5_K;
static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2 + QK_K/8, "wrong q5_K block size/padding");
#endif

// 6-bit quantization structure
// Weights are represented as x = a * q.
// The structure is divided into 16 blocks of 16 elements each, achieving 6.5625 bits per weight.
typedef struct {
    uint8_t ql[QK_K/2];       // Lower 4 bits of the quantized values.
    uint8_t qh[QK_K/4];       // Upper 2 bits of the quantized values.
    int8_t  scales[QK_K/16];  // Scales, quantized with 8 bits.
    ggml_fp16_t d;            // Super-block scale.
} block_q6_K;
static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + QK_K / 16 + 3*QK_K/4, "wrong q6_K block size/padding");

// Intermediate quantization and dot product structure
typedef struct {
    float   d;               // Delta value for quantization.
    int8_t  qs[QK_K];        // Quantized values.
    int16_t bsums[QK_K/16];  // Sum of quants in groups of 16.
} block_q8_K;
static_assert(sizeof(block_q8_K) == sizeof(float) + QK_K + QK_K/16*sizeof(int16_t), "wrong q8_K block size/padding");

// "True" 2-bit quantization structure, adjusted for block usage in ggml design.
// Results in 2.0625 bits per weight due to 16-bit scale for each block of 256.
typedef struct {
    ggml_fp16_t d;           // Super-block scale.
    uint16_t qs[QK_K/8];     // Quantized values.
} block_iq2_xxs;
static_assert(sizeof(block_iq2_xxs) == sizeof(ggml_fp16_t) + QK_K/8*sizeof(uint16_t), "wrong iq2_xxs block size/padding");

// 2.3125 bpw (bits per weight) quantization structure
typedef struct {
    ggml_fp16_t d;           // Super-block scale.
    uint16_t qs[QK_K/8];     // Quantized values.
    uint8_t  scales[QK_K/32];// Scales for quantization.
} block_iq2_xs;
static_assert(sizeof(block_iq2_xs) == sizeof(ggml_fp16_t) + QK_K/8*sizeof(uint16_t) + QK_K/32, "wrong iq2_xs block size/padding"); 
相关标签
About Me
XD
Goals determine what you are going to be.
Category
标签云
关于博主 uwsgi Bitcoin 多线程 Augmentation Sklearn Docker Excel Streamlit diffusers Vim TensorRT Statistics Breakpoint Random llama.cpp Template FP32 Markdown Knowledge WAN Claude Plate Git FP16 HuggingFace 腾讯云 TSV LeetCode InvalidArgumentError Food 多进程 Land 证件照 Miniforge Paddle Use EXCEL Website Linux Quantization Attention CTC GoogLeNet transformers Anaconda LoRA PDB Freesound CC Algorithm git CSV Bipartite SAM CLAP Llama Tracking Proxy Python Data QWEN 域名 GPT4 Card MD5 Qwen2 BeautifulSoup Jetson Math ResNet-50 Gemma FP64 ModelScope Dataset PyCharm DeepStream Vmess GPTQ Google uWSGI Base64 Distillation Jupyter Magnet Hilton Logo Datetime Numpy Pytorch UI Animate OCR CUDA Crawler Nginx Tensor DeepSeek Bin Bert SPIE Hotel 报税 Disk CEIR Translation Ubuntu GIT git-lfs tqdm Qwen 音频 Plotly COCO LLAMA PIP Zip SQLite Firewall Quantize Baidu WebCrawler VGG-16 Windows printf SQL Tiktoken XGBoost 飞书 Cloudreve Qwen2.5 Heatmap Pandas 财报 LLM PDF 版权 torchinfo CAM NameSilo Interview Transformers XML 公式 IndexTTS2 Review Github RAR Video 搞笑 scipy C++ 视频信息 v2ray Domain FP8 Safetensors tar YOLO Permission BF16 Color UNIX Password NLP TensorFlow Web SVR Michelin mmap RGB NLTK VPN FlashAttention JSON 继承 LaTeX 净利润 Paper AI ONNX v0.dev 签证 Django logger Image2Text Diagram ChatGPT Ptyhon OpenAI API VSCode FastAPI Pillow hf Mixtral BTC 算法题 GGML Hungarian Shortcut Clash CV TTS PyTorch Conda Pickle HaggingFace OpenCV Input 阿里云
站点统计

本站现有博文311篇,共被浏览739989

本站已经建立2376天!

热门文章
文章归档
回到顶部