EADST

Pytorch Q4_0 Quantize and Dequantize aligning with llama.cpp

Pytorch Q4_0 Quantize and Dequantize aligning with llama.cpp

import torch

# Check if CUDA is available
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")

def q4_0_quantize_and_dequantize_tensor(tensor):
    tensor = tensor.to(dtype=torch.float32, device=device)

    # Reshape tensor to process each 32-value block independently
    orig_shape = tensor.shape
    tensor = tensor.view(-1, 32)

    # Find the maximum absolute value per block
    max_vals = torch.max(torch.abs(tensor), dim=1)[0]

    # Prevent division by zero
    max_vals[max_vals == 0] = 1.0

    # Calculate d and id for each block
    d = max_vals / -8.0
    ids = 1.0 / d

    # Scale and quantize tensor elements
    scaled_tensors = tensor * ids[:, None]
    quantized_tensors = torch.clamp(scaled_tensors + 8.5, 0, 15).to(torch.uint8)

    # Dequantize the tensor
    dequantized_tensors = (quantized_tensors.float() - 8.0) * d[:, None]

    # Reshape back to the original shape
    dequantized_tensors = dequantized_tensors.view(orig_shape).to(dtype=torch.float16)

    return dequantized_tensors

# Assuming 'model_part' is already loaded and on CPU
model_part = torch.load(f"your_model_path/pytorch_model.bin", map_location="cpu")
keywords = [
    "embed_tokens.weight",
    "self_attn.q_proj.weight",
    "self_attn.k_proj.weight",
    "self_attn.v_proj.weight",
    "self_attn.o_proj.weight",
    "mlp.up_proj.weight",
    "mlp.gate_proj.weight",
    "mlp.down_proj.weight",
    "lm_head.weight"
]
for name, data in model_part.items():
    for word in keywords:
        if word in name:
            # Quantize and dequantize the entire tensor
            model_part[name] = q4_0_quantize_and_dequantize_tensor(data)

# Save the updated model parts
torch.save(model_part, "pytorch_model_quantized.bin")

Reference:

相关标签
About Me
XD
Goals determine what you are going to be.
Category
标签云
站点统计

本站现有博文266篇,共被浏览440532

本站已经建立2019天!

热门文章
文章归档
回到顶部