EADST

Save the LLAMA Model with LoRA to One Model

Save the LLAMA Model with LoRA to One Model

"""
Usage: 
python merge_llama_with_chinese_lora.py \
    --base_model path/to/llama/model \
    --lora_model path/to/first/lora/model [path/to/second/lora/model] \
    --output_type [pth|huggingface] \
    --output_dir path/to/output/dir
"""
import argparse
import json
import os
import gc
import torch
import peft
from peft import PeftModel
from transformers import LlamaForCausalLM, LlamaTokenizer
from huggingface_hub import hf_hub_download

parser = argparse.ArgumentParser()
parser.add_argument('--base_model', default=None, required=True,
                    type=str, help="Please specify a base_model")
parser.add_argument('--lora_model', default=None, required=True,
                    type=str, help="Please specify LoRA models to be merged (ordered); use commas to separate multiple LoRA models.")
parser.add_argument('--offload_dir', default=None, type=str,
                    help="(Optional) Please specify a temp folder for offloading (useful for low-RAM machines). Default None (disable offload).")
parser.add_argument('--output_type', default='pth',choices=['pth','huggingface'], type=str,
                    help="save the merged model in pth or huggingface format.")
parser.add_argument('--output_dir', default='./', type=str)


emb_to_model_size = {
    4096 : '7B',
    5120 : '13B',
    6656 : '33B',
    8192 : '65B',
}
num_shards_of_models = {'7B': 1, '13B': 2, '33B': 4, '65B': 8}
params_of_models = {
    '7B':
        {
        "dim": 4096,
        "multiple_of": 256,
        "n_heads": 32,
        "n_layers": 32,
        "norm_eps": 1e-06,
        "vocab_size": -1,
        },
    '13B':
        {
        "dim": 5120,
        "multiple_of": 256,
        "n_heads": 40,
        "n_layers": 40,
        "norm_eps": 1e-06,
        "vocab_size": -1,
        },
    '33B':
        {
        "dim": 6656,
        "multiple_of": 256,
        "n_heads": 52,
        "n_layers": 60,
        "norm_eps": 1e-06,
        "vocab_size": -1,
        },
    '65B':
        {
        "dim": 8192,
        "multiple_of": 256,
        "n_heads": 64,
        "n_layers": 80,
        "norm_eps": 1e-05,
        "vocab_size": -1,
        },
}

def transpose(weight, fan_in_fan_out):
    return weight.T if fan_in_fan_out else weight

# Borrowed and modified from https://github.com/tloen/alpaca-lora
def translate_state_dict_key(k):
    k = k.replace("base_model.model.", "")
    if k == "model.embed_tokens.weight":
        return "tok_embeddings.weight"
    elif k == "model.norm.weight":
        return "norm.weight"
    elif k == "lm_head.weight":
        return "output.weight"
    elif k.startswith("model.layers."):
        layer = k.split(".")[2]
        if k.endswith(".self_attn.q_proj.weight"):
            return f"layers.{layer}.attention.wq.weight"
        elif k.endswith(".self_attn.k_proj.weight"):
            return f"layers.{layer}.attention.wk.weight"
        elif k.endswith(".self_attn.v_proj.weight"):
            return f"layers.{layer}.attention.wv.weight"
        elif k.endswith(".self_attn.o_proj.weight"):
            return f"layers.{layer}.attention.wo.weight"
        elif k.endswith(".mlp.gate_proj.weight"):
            return f"layers.{layer}.feed_forward.w1.weight"
        elif k.endswith(".mlp.down_proj.weight"):
            return f"layers.{layer}.feed_forward.w2.weight"
        elif k.endswith(".mlp.up_proj.weight"):
            return f"layers.{layer}.feed_forward.w3.weight"
        elif k.endswith(".input_layernorm.weight"):
            return f"layers.{layer}.attention_norm.weight"
        elif k.endswith(".post_attention_layernorm.weight"):
            return f"layers.{layer}.ffn_norm.weight"
        elif k.endswith("rotary_emb.inv_freq") or "lora" in k:
            return None
        else:
            print(layer, k)
            raise NotImplementedError
    else:
        print(k)
        raise NotImplementedError


def unpermute(w):
    return (
        w.view(n_heads, 2, dim // n_heads // 2, dim).transpose(1, 2).reshape(dim, dim)
    )


def save_shards(model_sd, num_shards: int):
    # Add the no_grad context manager
    with torch.no_grad():
        if num_shards == 1:
            new_state_dict = {}
            for k, v in model_sd.items():
                new_k = translate_state_dict_key(k)
                if new_k is not None:
                    if "wq" in new_k or "wk" in new_k:
                        new_state_dict[new_k] = unpermute(v)
                    else:
                        new_state_dict[new_k] = v

            os.makedirs(output_dir, exist_ok=True)
            print(f"Saving shard 1 of {num_shards} into {output_dir}/consolidated.00.pth")
            torch.save(new_state_dict, output_dir + "/consolidated.00.pth")
            with open(output_dir + "/params.json", "w") as f:
                json.dump(params, f)
        else:
            new_state_dicts = [dict() for _ in range(num_shards)]
            for k in list(model_sd.keys()):
                v = model_sd[k]
                new_k = translate_state_dict_key(k)
                if new_k is not None:
                    if new_k=='tok_embeddings.weight':
                        print(f"Processing {new_k}")
                        assert v.size(1)%num_shards==0
                        splits = v.split(v.size(1)//num_shards,dim=1)
                    elif new_k=='output.weight':
                        print(f"Processing {new_k}")
                        if v.size(0)%num_shards==0:
                            splits = v.split(v.size(0)//num_shards,dim=0)
                        else:
                            size_list = [v.size(0)//num_shards] * num_shards
                            size_list[-1] += v.size(0)%num_shards
                            splits = v.split(size_list, dim=0) # 13B: size_list == [24976,24977]
                    elif new_k=='norm.weight':
                        print(f"Processing {new_k}")
                        splits = [v] * num_shards
                    elif 'ffn_norm.weight' in new_k:
                        print(f"Processing {new_k}")
                        splits = [v] * num_shards
                    elif 'attention_norm.weight' in new_k:
                        print(f"Processing {new_k}")
                        splits = [v] * num_shards


                    elif 'w1.weight' in new_k:
                        print(f"Processing {new_k}")
                        splits = v.split(v.size(0)//num_shards,dim=0)
                    elif 'w2.weight' in new_k:
                        print(f"Processing {new_k}")
                        splits = v.split(v.size(1)//num_shards,dim=1)
                    elif 'w3.weight' in new_k:
                        print(f"Processing {new_k}")
                        splits = v.split(v.size(0)//num_shards,dim=0)


                    elif 'wo.weight' in new_k:
                        print(f"Processing {new_k}")
                        splits = v.split(v.size(1)//num_shards,dim=1)

                    elif 'wv.weight' in new_k:
                        print(f"Processing {new_k}")
                        splits = v.split(v.size(0)//num_shards,dim=0)

                    elif "wq.weight" in new_k or "wk.weight" in new_k:
                        print(f"Processing {new_k}")
                        v = unpermute(v)
                        splits = v.split(v.size(0)//num_shards,dim=0)
                    else:
                        print(f"Unexpected key {new_k}")
                        raise ValueError
                    for sd,split in zip(new_state_dicts,splits):
                        sd[new_k] = split.clone()
                        del split
                    del splits
                del model_sd[k],v
                gc.collect()    # Effectively enforce garbage collection

            os.makedirs(output_dir, exist_ok=True)
            for i,new_state_dict in enumerate(new_state_dicts):
                print(f"Saving shard {i+1} of {num_shards} into {output_dir}/consolidated.0{i}.pth")
                torch.save(new_state_dict, output_dir + f"/consolidated.0{i}.pth")
            with open(output_dir + "/params.json", "w") as f:
                print(f"Saving params.json into {output_dir}/params.json")
                json.dump(params, f)


if __name__=='__main__':

    args = parser.parse_args()
    base_model_path = args.base_model
    lora_model_paths = [s.strip() for s in args.lora_model.split(',') if len(s.strip())!=0]
    output_dir = args.output_dir
    output_type = args.output_type
    offload_dir = args.offload_dir

    print(f"Base model: {base_model_path}")
    print(f"LoRA model(s) {lora_model_paths}:")

    if offload_dir is not None:
        # Load with offloading, which is useful for low-RAM machines.
        # Note that if you have enough RAM, please use original method instead, as it is faster.
        base_model = LlamaForCausalLM.from_pretrained(
            base_model_path,
            load_in_8bit=False,
            torch_dtype=torch.float16,
            offload_folder=offload_dir,
            offload_state_dict=True,
            low_cpu_mem_usage=True,
            device_map={"": "cpu"},
        )
    else:
        # Original method without offloading
        base_model = LlamaForCausalLM.from_pretrained(
            base_model_path,
            load_in_8bit=False,
            torch_dtype=torch.float16,
            device_map={"": "cpu"},
        )

    ## infer the model size from the checkpoint
    embedding_size = base_model.get_input_embeddings().weight.size(1)
    model_size = emb_to_model_size[embedding_size]
    print(f"Peft version: {peft.__version__}")
    print(f"Loading LoRA for {model_size} model")

    lora_model = None
    lora_model_sd = None
    for lora_index, lora_model_path in enumerate(lora_model_paths):
        print(f"Loading LoRA {lora_model_path}...")
        tokenizer = LlamaTokenizer.from_pretrained(lora_model_path)
        print(f"base_model vocab size: {base_model.get_input_embeddings().weight.size(0)}")
        print(f"tokenizer vocab size: {len(tokenizer)}")

        model_vocab_size = base_model.get_input_embeddings().weight.size(0)
        assert len(tokenizer) >= model_vocab_size, \
        (f"The vocab size of the tokenizer {len(tokenizer)} is smaller than the vocab size of the base model {model_vocab_size}\n"
        "This is not the intended use. Please check your model and tokenizer.")
        if model_vocab_size != len(tokenizer):
            base_model.resize_token_embeddings(len(tokenizer))
            print(f"Extended vocabulary size to {len(tokenizer)}")

        first_weight = base_model.model.layers[0].self_attn.q_proj.weight
        first_weight_old = first_weight.clone()

        print(f"Loading LoRA weights")
        if hasattr(peft.LoraModel,'merge_and_unload'):
            try:
                lora_model = PeftModel.from_pretrained(
                    base_model,
                    lora_model_path,
                    device_map={"": "cpu"},
                    torch_dtype=torch.float16,
                )
            except RuntimeError as e:
                if '[49953, 4096]' in str(e):
                    print("The vocab size of the tokenizer does not match the vocab size of the LoRA weight. \n"
                           "Did you misuse the LLaMA tokenizer with the Alpaca-LoRA weight?\n"
                           "Make sure that you use LLaMA tokenizer with the LLaMA-LoRA weight and Alpaca tokenizer with the Alpaca-LoRA weight!")
                raise e
            assert torch.allclose(first_weight_old, first_weight)
            print(f"Merging with merge_and_unload...")
            base_model = lora_model.merge_and_unload()
        else:
            base_model_sd = base_model.state_dict()
            try:
                lora_model_sd = torch.load(os.path.join(lora_model_path,'adapter_model.bin'),map_location='cpu')
            except FileNotFoundError:
                print("Cannot find lora model on the disk. Downloading lora model from hub...")
                filename = hf_hub_download(repo_id=lora_model_path,filename='adapter_model.bin')
                lora_model_sd = torch.load(filename,map_location='cpu')
            if 'base_model.model.model.embed_tokens.weight' in lora_model_sd:
                assert lora_model_sd['base_model.model.model.embed_tokens.weight'].shape[0]==len(tokenizer), \
                ("The vocab size of the tokenizer does not match the vocab size of the LoRA weight. \n"
                "Did you misuse the LLaMA tokenizer with the Alpaca-LoRA weight?\n"
                "Make sure that you use LLaMA tokenizer with the LLaMA-LoRA weight and Alpaca tokenizer with the Alpaca-LoRA weight!")

            lora_config = peft.LoraConfig.from_pretrained(lora_model_path)
            lora_scaling = lora_config.lora_alpha / lora_config.r
            fan_in_fan_out = lora_config.fan_in_fan_out
            lora_keys = [k for k in lora_model_sd if 'lora_A' in k]
            non_lora_keys = [k for k in lora_model_sd if not 'lora_' in k]

            for k in non_lora_keys:
                print(f"merging {k}")
                original_k = k.replace('base_model.model.','')
                base_model_sd[original_k].copy_(lora_model_sd[k])

            for k in lora_keys:
                print(f"merging {k}")
                original_key = k.replace('.lora_A','').replace('base_model.model.','')
                assert original_key in base_model_sd
                lora_a_key = k
                lora_b_key = k.replace('lora_A','lora_B')
                base_model_sd[original_key] += (
                    transpose(lora_model_sd[lora_b_key].float() @ lora_model_sd[lora_a_key].float(),fan_in_fan_out) * lora_scaling
                )
                assert base_model_sd[original_key].dtype == torch.float16

        # did we do anything?
        assert not torch.allclose(first_weight_old, first_weight)

    tokenizer.save_pretrained(output_dir)

    if output_type=='huggingface':
        print("Saving to Hugging Face format...")
        LlamaForCausalLM.save_pretrained(base_model, output_dir) #, state_dict=deloreanized_sd)
    else: # output_type=='pth
        print("Saving to pth format...")

        base_model_sd = base_model.state_dict()
        del lora_model, base_model, lora_model_sd

        params = params_of_models[model_size]
        num_shards = num_shards_of_models[model_size]
        n_layers = params["n_layers"]
        n_heads = params["n_heads"]
        dim = params["dim"]
        dims_per_head = dim // n_heads
        base = 10000.0
        inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))

        save_shards(model_sd=base_model_sd, num_shards=num_shards)

Reference:

merge_llama_with_chinese_lora.py

相关标签
About Me
XD
Goals determine what you are going to be.
Category
标签云
mmap Password Paddle Logo SVR Qwen ResNet-50 Claude RAR 音频 PIP YOLO tar Numpy 腾讯云 继承 Tiktoken TTS hf Color News GGML 关于博主 WAN 净利润 torchinfo Sklearn CC Llama 证件照 Website 阿里云 BeautifulSoup Use Pillow 递归学习法 CAM PDB printf Plotly Gemma Clash Mixtral Dataset Quantize 图形思考法 Tracking Github Math COCO Search Pytorch Knowledge TensorFlow FP8 LeetCode logger Bin Qwen2 uwsgi v2ray Breakpoint MD5 v0.dev 签证 Linux Google Anaconda Base64 IndexTTS2 Translation diffusers Random FP64 TSV Interview Zip AI BTC Video 第一性原理 Proxy Hilton Statistics Shortcut Qwen2.5 Augmentation GoogLeNet Streamlit Vmess DeepSeek Algorithm Safetensors Land Ubuntu Django UI Conda CV PDF LaTeX Distillation Git Jetson Hotel llama.cpp FP32 Review GPTQ Agent Jupyter Miniforge PyCharm CLAP Paper Transformers Diagram Bipartite CSV Input CEIR LoRA 多进程 GPT4 Bert UNIX LLAMA GIT Baidu EXCEL RGB Bitcoin Python Windows PyTorch Cloudreve C++ Attention Docker uWSGI Pandas transformers FlashAttention 强化学习 Hungarian Permission 搞笑 Tensor CTC git LLM Ptyhon Nginx Animate Freesound 版权 Datetime Heatmap VGG-16 FP16 FastAPI Excel HuggingFace OpenAI 域名 XGBoost Pickle SAM NLP TensorRT Card Plate 财报 Michelin 公式 HaggingFace WebCrawler ChatGPT 飞书 SPIE Markdown 顶会 tqdm NameSilo 多线程 QWEN Firewall Web JSON VSCode ONNX XML API 报税 DeepStream ModelScope OCR BF16 Image2Text Template Quantization SQLite Crawler OpenCV git-lfs Food InvalidArgumentError VPN CUDA SQL 算法题 Data Domain Vim NLTK Magnet scipy Disk
站点统计

本站现有博文320篇,共被浏览756709

本站已经建立2421天!

热门文章
文章归档
回到顶部