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Abstract—We introduce two data augmentation and normal-
ization techniques, which, used with a CNN-LSTM, significantly
reduce Word Error Rate (WER) and Character Error Rate
(CER) beyond best-reported results on handwriting recognition
tasks. (1) We apply a novel profile normalization technique
to both word and line images. (2) We augment existing text
images using random perturbations on a regular grid. We
apply our normalization and augmentation to both training
and test images. Our approach achieves low WER and CER
over hundreds of authors, multiple languages and a variety of
collections written centuries apart. Image augmentation in this
manner achieves state-of-the-art recognition accuracy on several
popular handwritten word benchmarks.

Keywords-Data Augmentation, Handwriting Recognition, Deep
Learning, Elastic Distortion, CNN, LSTM

I. INTRODUCTION

The need to transcribe archives of handwritten documents

has accelerated the development of Deep Learning networks

for automated handwriting recognition (HWR). As shown in

Fig. 1, handwriting varies widely from author to author (row

a) as well as from instance to instance for a single author (row

b). While modern neural networks show good performance at

HWR, available training data is often not sufficient to capture

this variation.

As a result, we introduce a more robust augmentation

technique to model the variation of a given author. This is

illustrated in Fig. 1 where augmentation is performed by

distorting the boxed instance 3 times (row c) with overlay in

the 4th column. This overlay is comparable to the overlay in

row b which shows the natural variation of the single author.

Recently, Convolutional Neural Networks (CNNs) have

been shown to produce impressively low error rates for large,

multi-author handwritten word datasets [1]. Such networks

have made use of reduced feature representations with deep

feature embedding and augmented training to perform word

spotting as well as recognition [2]. Recurrent neural net-

works (RNNs) have also been applied successfully to HWR,

producing top results in the recent competition on German

handwriting recognition [3].

To improve the state-of-the-art in neural-network-based

HWR, we introduce two novel data augmentation and nor-

malization techniques that should allow any HWR neural

network to improve generalization. We achieve very accurate

recognition at both the word and line level with results that

Fig. 1. (a) 3 different IAM authors + overlay (4th column) (b) Individual
IAM author + overlay (c) 3 distortions of boxed instance using our approach.
Overlaid distortions (row c) closely model natural variations in row b overlay.

eclipse current best approaches at the word level: (1) profile

normalization of both word and line images, and (2) distortion

of existing words using random perturbations on a regular

grid aligned to the baseline. We apply normalization and

augmentation to both training and test images.

We evaluate our augmentation and normalization techniques

using a CNN-LSTM architecture [4] to perform HWR. Our

choice of neural network architecture is motivated by simplic-

ity and the flexibly to recognize on both word and line images.

We present the lowest Word Error Rates (WER) to date

over thousands of authors and multiple languages written

centuries apart. This includes the READ dataset consisting

of historical German documents [3], and large multi-author

datasets (IAM [5] and RIMES [6]).

II. RELATED WORK

A. Handwriting Recognition

HWR is a long-standing computer vision problem [7], [8],

[9]. More recently, deep learning approaches have yielded

very low error rates for large, contemporary multi-author

handwritten datasets.

Poznaski and Wolf [1] perform word-level recognition by

employing a fixed-size CNN architecture that evaluates binary

lexical attributes over word images, such as whether a given

portion of the image contains a certain unigram or bigram

(PHOC [10]). The correct transcription is determined by the

word in a lexicon closest to this representation. Krishnan et

al. [2] also employ a fixed-size CNN architecture to learn

features for the PHOC representation for embedding the text

and images into a common subspace.

Another general approach uses RNNs for HWR. These

have been widely adopted with the introduction of CTC

(connectionist temporal classification) [11], particularly using
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the popular LSTM (long short-term memory) units. They are

capable of being trained on, and thus recognize, a line of

text without any other segmentation information (i.e. they

do not require word-level segmentation), which makes them

very appealing for the application of recognizing handwriting

in documents. Doetsch et al. [12] use a 3-layer BLSTM

(bidirectional LSTM) with PCA-based features. Bluche et

al. [13] use four systems with ROVER [14]: deep multi-layer

Perceptrons on handcrafted features, deep multi-layer Percep-

trons on pixel values, BLSTM on handcrafted features, and

BLSTM on pixels. Both systems have achieved state-of-the-

art results for line level recognition on the IAM and RIMES

Databases. In a recent competition on 14th through 18th

century German handwriting [3] (Fig. 4), the top three methods

used architectures generally consisting of convolutional layers

and LSTM (bidirectional or multidirectional) layers [4], [15].

We follow this basic approach in the design of our evaluation

network.

B. Data Augmentation

Deep learning networks typically require large amounts of

data. However, for many datasets, especially historical docu-

ments, the data is fixed, so augmentation must be performed

by modifying the original data.

For image recognition, augmentation is applied using simple

transformations such as flipping images horizontally, scaling,

or sampling subwindows of the images [16]. For handwriting,

slight affine transformations are often used [1]. However, affine

transformations over word images fail to capture variations of

slant and size that occur at the character level.

Shen and Messina [17] use a corpus of segmented hand-

written Chinese characters to create new line images for line

recognition. This is done by concatenating characters, with

variation in spacing and alignment, or replacing characters

in a document image with new (normalized) characters. This

augmentation method is effective, but requires a character-

level handwritten dataset to build from.

Krishnan and Jawahar [18] present a method similar to [17]

of pretraining a network using a synthesized dataset of cursive

fonts rather than handwriting to synthesize word images. By

varying inter-character spacing, stroke width, and foreground-

background pixel distributions, they create a convincing syn-

thetic dataset, used to train a network that is later fine-tuned

on the real target dataset. This same synthetic dataset and

methodology is applied in the previously discussed work [2].

However, this technique is only effective when the fonts can

closely model the handwriting, which in the case of historical

documents may not be possible. Fonts also fail to fully capture

the wide variations in handwriting style such as those shown

in Fig. 1.

Our augmentation technique builds upon, but is substantially

different from that described in [19]. Simard et al. [19] show

improvements over affine transformations by using random

elastic distortions over single character images. This is done

by creating a random displacement field followed by Gaussian

smoothing. This technique was originally used for single

character recognition on small 28x28 handwritten digit images,

and, to our knowledge, has not been applied to word or line

images.

The distortions of [19] are based on two parameters: σ and

α. The authors give recommendations for σ and α values

for 28x28 images. However, tuning σ and α is nonintuitive,

and for our higher resolution images (variable width x80) we

had to iterate over many possible values and select from the

examples that looked the most plausible.

III. AUGMENTATION AND NORMALIZATION

We introduce novel methods for augmentation and normal-

ization to improve HWR by allowing the network to be more

tolerant of variations in handwriting. Normalization adjusts

for differences in the scale of the handwriting. The augmen-

tation models the natural character-to-character variation and

improves the network’s accuracy and ability to learn.

A. Profile Normalization

Images are normalized to compensate for variations in the

size of the handwriting. We normalize word images using the

difference d between the upper and lower baseline provided

in the IAM Database (Fig. 2) and the standard deviation σ of

their horizontal profiles. We define ratio r as

r =
d̄

σ̄
=

1

|A|
|A|∑

i=1

d̄i
σ̄i

(1)

where d̄i is the average baseline difference for author i, σ̄i is

the average standard deviation of the horizontal profile, and A
is the set of authors. r ≈ 1.75 for the IAM Database.

We normalize all images by a scale factor s = 16
σ̄ir

since

d̄i ≈ 16 pixels for most of the authors. Figure 2 shows words

from two authors with their respective horizontal profiles in

blue. Using s, the top images are scaled to a roughly equivalent

size.

Even if author identifiers are not labeled, in many cases

same authorship can be easily inferred (i.e. same sentence,

same page, etc.). In RIMES, authors are not labeled, but we

knew that each page contained only handwriting from a single

author, so we treated each page as a unique author even though

the same author may have written multiple pages. In addition,

since no lower and upper baselines are provided for the RIMES

Database, these are also scaled using r from IAM. After height

normalization, images are then centered according to the center

of mass.

B. Novel Grid-Based Distortion Augmentation

Previous methods have sheared or rotated an entire word

image to generate augmented data [1]. However, we observe

that naturally occurring variations in handwriting are not
usually manifested as uniform slants across the entire word

(an affine transformation), but more as slight differences in

scale and slant from character to character within the word.

We employ a random grid mesh to capture this.

Random warp grid distortion (RWGD) is performed as

follows. (1) Place control points on a regular grid such that
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Fig. 2. Image profiles (top, middle) and resulting normalization (bottom)
from baseline b and and standard deviation σ.

Fig. 3. Word image with uniform grid superimposed. 2nd image (right) with
distorted grid and image distorted accordingly.

they align to the baseline. For IAM/RIMES we used a 26-

pixel interval. (2) Perturb each control point in the x and y

direction by randomly sampling from a normal distribution.

For IAM/RIMES we used a standard deviation of 1.7 pixels.

(3) Warp the image according to the perturbed control points.

Given the profile normalization and center of mass align-

ment, the middle row of the grid approximates the height of

the lowercase characters. This allows the distortion grid to

apply the warp over entire characters, minimizing the creation

of kinks or creases within a character, thereby creating a more

natural looking distortion. Figure 3 shows a word image being

distorted according to the random grid.

Our technique is based on two parameters, the control

points placement interval and standard deviation by which

to randomly displace the control points. In our experiments,

we found that adjusting these parameters was intuitive to

visualize and tune for the specific handwriting sets. We place

the control points on intervals of 26 pixels (slightly larger than

the average baseline height) and perturbed the points about a

normal distribution with a standard deviation of 1.7 pixels.

These parameters are for images with a height of 80 pixels.

Both values scale linearly with the height of image and would

need to be scaled if different sized images were used.

C. Test-side Augmentation

Similar to Poznanski and Wolf [1], we employ test-side geo-

metric augmentation using our described techniques. Test-side

augmentation is performed by (1) generating N augmented

examples for each word/line image in the test set (N=20 in our

experiments), (2) performing recognition on the N augmented

images, and (3) choosing from the N predictions the one

that produces the lowest CTC loss based on a lexicon. If

using lexicon-free decoding, because there is not an associated

loss, we select the most commonly occurring prediction. In

contrast to [1], our network uses recurrent layers, allowing us

to process line images of arbitrary length. Therefore, instead

of averaging feature vectors prior to classification, we use the

predictions for each image variant as described in step 3.

IV. THE CNN-LSTM NETWORK

Our CNN-LSTM network, based on [4], uses 6 convolu-

tional layers: 64, 128, 256, 256, 512, and 512 (3x3) filters

respectively in the forward direction. Batch normalization

is applied after the 4th and 5th layers. Max pooling (2x2

window), stride 2 in both directions are applied after the 1st

and 2nd layers. Max pooling (2x2 window) and vertical stride

of 2 and horizontal stride of 1 is applied after the 4th and 6th

layer. Two BLSTM layers follow with 512 and 256 hidden

nodes respectively with dropout rate of 0.5 before each. A

fully connected layer reduces the output to the character set

size and a softmax is applied. It is trained using the CTC loss

and the ADADELTA optimizer.

Our CNN has w × h input nodes where h is a fixed

pixel height dependent on the dataset (German: 60, RIMES

& IAM: 80) and w is the corresponding width where the

aspect ratio of the image is preserved. We use a single input

channel (grayscale image) with the exception of the German

dataset where we use two additional binarizations as input

channels: the thresholding scheme specified in [3] and Howe’s

binarization [20].

V. RESULTS AND DISCUSSION

We first present results of our raw network output with and

without the use of a lexicon (Table I). This provides a baseline

for comparing our results with prior work and the improvement

obtained using augmentation and lexical correction.

To demonstrate the effectiveness of our augmentation and

normalization strategies, we compare the results of our net-

work with and without augmentation and normalization (Ta-

ble III), and how these results compare with those obtained

using more traditional augmentation methods (Table IV).

We also compare our results with prior state-of-the-art meth-

ods (Table V). We evaluate over datasets that vary in language,

authorship, content, and general appearance. These include

large multi-author datasets (IAM and RIMES) and historical

14th through 18th century German documents, first featured

at ICFHR 2016. Depending on the dataset, we appropriately

report results at word-level and/or line-level.

Because we have found some variation in the evaluation

methods used previously, when comparing our results with

prior work, we take careful consideration to report parameters

such as case sensitivity, inclusion of punctuation, what lexicon

was used, and what portion of the testing set was actually used.

We do this with the intention of making our comparisons as

clear, fair and accurate as possible.

A. Lexicon and Lexicon-free Network Decoding

The top line of Table I gives the results of our network

output without the use of a lexicon (Lexicon Free Decoding).

With the use of our augmentation techniques (training and

test augmentation) and without lexical correction, our network

yields a WER/CER of 19.07/6.07 for the IAM dataset and
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IAM RIMES
Method WER CER WER CER

Lexicon Free 19.07 6.07 11.29 3.09
Lexicon 5.71 3.03 2.85 1.36

TABLE I
LEXICON FREE DECODING VS LEXICON-BASED DECODING

11.29/3.09 for RIMES. Line 2 of Table I shows results from

augmentation and lexical decoding.

For both lexicon (LD) and lexicon-free decoding (LFD) of

the network, we employ the same method described in [4]. For

lexicon-free decoding, at each time step we select the character

with the highest activation. The lexicon-free decoding applies

to both line-level and word-level recognition. We apply lexicon

decoding to word-level but not line-level recognition. We find

the word in the lexicon that produces the lowest CTC loss

for the output of the network. We prune the lexicon to words

within a certain edit distance of the lexicon-free decoding to

avoid computing the CTC loss for all words in the lexicon.

Most previous work compares results after applying some

form of lexical correction. However, we find it useful to

compare network output before applying the lexicon, because

variations in the size and the out-of-vocabulary (OOV) rate of

the lexicon can significantly affect performance.

B. Qualitative Results

Table II shows an example (IAM) word image after various

augmentation techniques have been applied. The red grid

is to help visualize the effects of the augmentation. Profile

normalization has been applied to all of the images. The

images in the right-hand column show five overlaid instances

of the specified augmentation techniquesimilar to the three

overlaid instances shown in Figure 1 (4th column) where we

compare our technique to the natural variation in handwriting.

Figure 4 shows a comparison of each augmentation tech-

nique applied to a noisy historical document. The first example

in each group shows one distortion of the original on the top

row. The second shows five similar distortions overlaid, as in

Table II. In these examples the augmentation looks even more

convincing because the handwriting already has significant

variation. The last image in Figure 4 shows that our method

produces more variation than the other techniques, while the

single image is still a plausible exemplar. We believe the

reason we have the lowest WER across all datasets is because

our augmentation more closely models and accounts for the

natural variation in handwriting from instance to instance and

from author to author.

Affine and rotation generates variation for the ascender

and descender parts of the characters, but generates minimal

variation along the baseline of the characters, and thus fails

to model the more natural within-character variation that

typically occurs in handwriting. In our experiments we used

±5◦ for shear and rotation.

Given our parameterization, [19] produces localized dis-

tortions. However, we found that σ and α were difficult to

tune and discovered these values (σ = 8 and α = 64)

Single Example Five Overlaid Examples
Original

Shear/Rotation (±5◦)

Simard et al.[19] (σ = 8, α = 64)

Ours

TABLE II
QUALITATIVE EXAMPLES OF THE AUGMENTATION TECHNIQUES.

only by iterating through many possible parameterizations and

selecting from those that looked most plausible. In addition,

its use up to this point has been limited to single digit images

and its ability to produce natural variation in the sizes of the

characters and the inter-character spacing is limited.

In contrast, our technique uses a warp grid where the

control points align with the height of the baseline characters,

producing more natural variation in the sizes of the characters

and inter-character spacing. Also, only a single parameter

needs to be tuned: the standard deviation for perturbation of

the control points. This parameter is in units of pixels so it is

simple to conceptualize and select.

C. Ablation Study: Elastic Distortion; Profile Normalization

Table III contains ablation results on the IAM and RIMES

Databases, showing network performance without and with

varying amounts of augmentation and normalization. All re-

sults in Table III make use of lexical correction.

The best results are obtained when Random Warp Grid

Distortion (RWGD) and Profile Normalization (PN) are ap-

plied to both training and test images. With RWGD and

PN, WER/CER drop to 5.71/3.03 for the IAM dataset and

2.85/1.36 for RIMES.

As can be seen, the drop in error rates is not strictly

monotonic. For example, if RWGD is applied to the Training

Set, but not the Test Set, the error increases slightly for

RIMES. Similarly, the error increases if PN is used without

RWGD.

However, marked improvements are achieved when RWGD

and PN are used together. The unique combination of mesh-

based elastic distortion and baseline centering using profile

normalization achieves state-of-the-art results on these and

other datasets. For both IAM and RIMES, WER and CER

drop by about 40%. For IAM, WER decreases from 9.27 to

5.71, and CER from 5.14 to 3.03. For RIMES, WER drops

from 4.98 to 2.85 and CER from 2.38 to 1.36.
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Fig. 4. Augmentation examples for German handwriting. Top: single
example. Bottom: five overlaid examples. Ground truth transcription: "Zū
Abfertig: vnd Contentier"

RWGD PN IAM RIMES
Train Test WER CER WER CER

9.27 5.14 4.98 2.38
� 7.88 4.39 5.12 2.43
� � 6.09 3.33 4.72 2.23

� 9.87 5.35 7.53 3.69
� � 7.18 3.93 3.84 1.82
� � � 5.71 3.03 2.85 1.36

TABLE III
ABLATION STUDY (WITHOUT PUNCTUATION AND CASE). RWGD =

RANDOM WARP GRID DISTORTION, PN = PROFILE NORMALIZATION.

D. Random Warp Grid Distortion Compared with Other Ge-
ometric Augmentation Techniques

For the IAM and RIMES Databases, we compare our

novel random warp grid distortion augmentations (RWGD)

to 36 affine transformations used in the work of [1], where

predetermined slight rotation and shear operations are applied

to word images. We also compare our technique to the elastic

distortion by Simard et. al. [19]. Profile normalization is used

for all techniques to facilitate comparison. Our technique

demonstrates a 12-25% improvement over the next best ap-

proach in Table IV, even after our PN has been used with

those techniques. We believe this is because our RWGD more

closely models the natural character-to-character variation we

see in handwriting.

E. IAM Handwriting Database

The IAM Handwriting Database [5] is a multi-author hand-

writing recognition database of 115,320 word-level images

from 500 authors. The database provides a standard split for

IAM RIMES
Method Train Test WER CER WER CER
None 9.87 5.35 7.53 3.69

Rotate/Shear � 7.63 4.16 5.09 2.25
Rotate/Shear � � 6.71 3.56 3.92 1.97

Simard et al.[19] � 7.64 4.11 4.03 1.85
Simard et al.[19] � � 6.57 3.45 3.78 1.66

Ours � 7.18 3.93 3.84 1.82
Ours � � 5.71 3.03 2.85 1.36

TABLE IV
COMPARISON OF AUGMENTATION METHODS. ALL EVALUATIONS USED

PROFILE NORMALIZATION.

training, validation, and test sets. The data sets are mutually

exclusive with regard to the authors; each author contributes

to only one set. There are two tasks associated with this

dataset: word-level recognition and line-level recognition. We

only report results for word-level recognition.

The IAM test set consists of 17,614 word images. 3,863 of

these have ground truth or segmentation errors, so we discard

these from the test set, reducing the test set to 13,751 words.

Discarding images with only punctuation further reduces the

test set to 11,601 words. This test set reduction is consistent

with prior work.

For word-level recognition, previous work is generally

lexicon-based. In some cases the lexicon is made up of words

from the training and test sets, while in other work, the lexicon

contains only words from the test lexicon. When punctuation

is not evaluated, it is removed from the ground truth of word

images that contain a combination of alphanumeric characters

and punctuation.

1) IAM Word-level Recognition: Our network is trained

to recognize punctuation and capitalization, even when not

considered during evaluation. We train on all of the word

images, even the ones marked with segmentation errors. Every

word on a line is marked with an error if a single word on

the line has an incorrect segmentation, even if most of the

words are segmented correctly. Our system is robust to these

errors and benefits from the additional training data. Previous

work reveals three variations of evaluations on the IAM word-

level recognition task. Table V is divided into three sections

(Top, Middle, Bottom) to compare our results with different

evaluation methods and lexicons. Top: Punctuation and case

are considered in the evaluation. However, images that contain

only punctuation are discarded. The lexicon contains words

from the training and test sets. Middle: Punctuation and case

are not considered in the evaluation. The lexicon contains

words from the training and test sets. Bottom: Punctuation

and case are not considered in the evaluation. The lexicon

contains words only from the test set. State-of-the-art results

are shown in bold.

In Table V, Top, we demonstrate a significant improvement

(.72) in WER compared to [21]. However, our CER is higher

by .16. This can mostly be explained by the difference in

technique for applying the lexicon. [21] will reject a word if

it is not a close enough match to a word in the lexicon and then

apply an alternative decoding. Our approach, and the other’s

in the results tables, always selects a word from the lexicon.
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With Punctuation & Case, Training/Test Set Lexicon
Method WER CER
Bruno et al.[21] 6.55 2.99
Ours 5.83 3.15

Without Punctuation & Case, Training/Test Set Lexicon
Method WER CER
Poznanski and Wolf[1] 6.45 3.44
Ours 5.71 3.03
Without Punctuation & Case, Test Set Lexicon
Method WER CER
Krishnan et al. [2] 6.69 3.72
Ours 4.97 2.82

TABLE V
IAM DATABASE: WORD-LEVEL RECOGNITION

With Punctuation & Case, Competition Lexicon
Method WER CER
Menasri et al.[22] 4.75 -
Ours 3.69 1.69
Without Punctuation & Case, Competition Lexicon
Method WER CER
Poznanski and Wolf[1] 3.90 1.90
Bruno et al.[21] 3.48 1.34
Ours 2.85 1.36

TABLE VI
RIMES DATABASE: WORD-LEVEL RECOGNITION

As such, our technique favors a low WER where [21] favors

a low CER.

When punctuation and case are not considered (Table V,

Middle and Bottom), compared to previous state-of-the-art

results, our approach yields significant improvement in both

WER and CER, whether the lexicon is comprised of both

the test set and the training set (Middle) or only the test set

(Bottom).

F. The RIMES Database

The 2011 version of the RIMES Database [6] has over

60,000 French words with over 1,300 authors. A 5,744 word

lexicon is used for word-level recognition. In the official

competition, capitalization and punctuation were considered in

the WER. CER was not computed in the official competition.

Results on RIMES (Table VI) are divided into 2 sections:

where punctuation and upper/lower case is considered and

where it is not. The lexicon originally provided by the com-

petition is used in both sections.

Section 2 of Table VI provides results when punctuation

and case is not considered. We include the results from [1] in

this section, assuming they do not consider punctuation and

case, as in Table V. CER with our approach is about the same

as that reported in [21], even though [21] favors a low CER

over WER, as noted in Table V, above.

G. 14th to 18th Century German

This dataset, consisting of 400 pages [3] of handwriting

from German authors between 1470 and 1805, is the most

challenging dataset because of its antiquity, flourishing writing

style, archaic vocabulary, and significant ink bleed-through.

The training set consists of 350 pages, 8,367 lines, and

35,169 running words with a lexicon of 6,985 words. The

Method WER CER Average
RWTH 20.9 4.8 12.85
BYU 21.1 5.1 13.10
A2IA 22.1 5.4 13.75
LITIS 26.1 7.3 16.70
Ours 19.7 5.0 12.35

TABLE VII
GERMAN DATABASE: LINE-LEVEL RECOGNITION

test set consists of 50 pages, 1,043 lines, and 3,994 running

words with a lexicon of 1,526 words.

The results of the competition are summarized in Table VII

where there is a third column that represents the average of

the WER and the CER. The winner of the competition was

designated as the group that had the lowest average.

Our CNN-LSTM network with image augmentation and

normalization produced a WER of 19.7, 1.2 less than the

winner of the competition. Our CER was still .2 greater than

the winner. However, our average (12.35) is 0.5 less than the

winner. We believe that using a German language model (as

did the winner) could reduce this error even further.

VI. CONCLUSION

We have introduced two new data augmentation and nor-

malization techniques and have demonstrated their use with a

CNN-LSTM to produce the lowest word error rate (WER)

to date over hundreds of authors, multiple languages, and

thousands of documents including challenging, medieval, his-

torical documents with noise, ink bleed-through, and faint

handwriting. Because these techniques are independent of the

network used, they could also be applied to enhance the

performance of other networks and approaches to HWR.
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