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▪ The AI City Challenge Track 2 incorporates the language modality, called Natural 
language-based vehicle track retrieval. This task aims to retrieve single-camera 
tracks of vehicles that are consistent with the natural language query.

Introduction

Figure 1. An example from CityFlow-NL for 2023 CVPR AI City Challenge Track 2. 
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▪ An innovative deep learning system called Multimodal Language Vehicle Retrieval 
(MLVR) is developed for text-vehicle retrieval. 

Methodology

Figure 2. The structure of our MLVR system.
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▪ An analysis of Natural Language (NL) descriptions and corresponding descriptions 
from alternative perspectives (NL other view descriptions) reveals a connection.

Methodology

Figure 3. The different video frames and NL descriptions of the same vehicle in the CityFlow-NL train dataset.
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▪ The video recognition module, which serves as the foundation of our MLVR model, 
is adapted from the X-CLIP algorithm to effectively discern the association between 
video clips and their corresponding text sentences.

Methodology

Figure 4. The primary architecture of the video recognition module. 
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▪ The architecture of the vehicle color module, which employs a CLIP-based few-shot 
learning model, consists of several distinct segments.

Methodology

Figure 5. The architecture of the vehicle color module
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▪ Through an in-depth analysis of vehicle maneuver trajectories, the vehicle motion 
module has been developed as a cultured direction control system.

Methodology

Figure 6. The example of vehicle motion module. 
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▪ The vehicle surrounding module effectively leverages multiple sources of 
information to generate accurate predictions.

Methodology

Figure 7. The structure of vehicle surrounding module.
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▪ Following vector data fusion, the match control system is employed to identify 
the optimal text-video match.

Methodology

Figure 8. The matrix example of matching elimination system.
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▪ The dataset employed for the evaluation of the MLVR model is CityFlow-NL,
consisting of 2,155 distinct vehicle trajectories and associated track IDs, as well as
corresponding natural language descriptions.

▪ In addition to the primary dataset, a separate test set comprising 184 distinct
vehicle trajectories is utilized to assess the MLVR model’s final performance.

▪ The mean reciprocal rank (MRR) serves as the primary evaluation metric for
assessing the performance of the MLVR model using the CityFlow-NL dataset.

Experiment
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▪ The ablation study emphasizes the efficacy of each module in augmenting the overall
performance of our MLVR model, and our MLVR model achieves a second-place
ranking with an MRR score of 0.8179.

Table 2. The public leaderboard of tracked-vehicle retrieval 
by natural language descriptions.

Experiment

Table 1. Ablation study analysis of our MLVR method.
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▪ Creation of the MLVR system, an innovative multimodal technique.

▪ MLVR uses text, image, and video data for enhanced vehicle tracking.

▪ Showcased exceptional performance in the 7th AI City Challenge.

▪ Demonstrated significant potential in traffic management.

Conclusion
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Thank You!

Q&A

Dong Xie
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