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Introduction

" The Al City Challenge Track 2 incorporates the language modality, called Natural
language-based vehicle track retrieval. This task aims to retrieve single-camera
tracks of vehicles that are consistent with the natural language query.

"
"A red sedan drives forward.",
"A red midsize sedan keep straight.”,
"A red car drove through an intersection.”
1,
"nl_other_views": [
"A red sedan keeping straight.",
"A red sedan runs down the street followed by a green van.",
"A maroon sedan runs down the road followed by a green vehicle."

]

Figure 1. An example from CityFlow-NL for 2023 CVPR Al City Challenge Track 2.
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Methodology

" Aninnovative deep learning system called Multimodal Language Vehicle Retrieval
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[ "A red midsize car drives down a road towards two other cars.", e meme e nannanaet .’

"Small red coupe goes straight down the road behind two cars.",

"A dark red sedan drives straight down the road and abruptly turns 0
right at the next side street." ], .

"nl_other_views": ;" Video “'-_

[ "Asmall red coupe runs straight on the street.", ® » \ Recognition Module ; R
"Ared car goes forward.", &

"Red sedan makes a left turn at intersection.",
"A maroon sedan runs down the street with all other cars parked.”,
"Red sedan turns left." ]

Figure 2. The structure of our MLVR system.
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Methodology

" An analysis of Natural Language (NL) descriptions and corresponding descriptions
from alternative perspectives (NL other view descriptions) reveals a connection.

"nl": “nl": B )| kio-

[ "Ared sedan drives forward.", ["Ared sedan keeping straight.", ["A red sedan runs down the street followed by a green van.",

"A red midsize sedan keep straight.", "A red sedan drives forward.", "A red sedan keeping straight.",

"A red car drove through an intersection."], ; "A red midsize sedan keep straight."], "A maroon sedan runs down the road followed by a green vehicle."],
"nl_other_views": < "nl_other_views": "nl_other_views":
[ "Ared sedan keeping straight.", ["A red sedan runs down the street followed by a green van.", [ "A red midsize sedan keep straight.",

"A red sedan runs down the street followed by a green van.", "Ared car drove through an intersection.", "Ared car drove through an intersection.",

"A maroon sedan runs down the road followed by a green vehicle."] "A maroon sedan runs down the road followed by a green vehicle."] "A red sedan drives forward."]

Scenario 1 Scenario 2 Scenario 3

Figure 3. The different video frames and NL descriptions of the same vehicle in the CityFlow-NL train dataset.
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Methodology

" The video recognition module, which serves as the foundation of our MLVR model,
is adapted from the X-CLIP algorithm to effectively discern the association between
video clips and their corresponding text sentences.
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"Ared sedan drives forward.",

"A red midsize sedan keep straight.",
"Ared car drove through an intersection."], Text

"nl_other_views": [ Encoder —
"A red sedan keeping straight.",

"A red sedan runs down the street followed by a green van.",
"A maroon sedan runs down the road followed by a green vehicle." ]
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Figure 4. The primary architecture of the video recognition module.
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Methodology

" The architecture of the vehicle color module, which employs a CLIP-based few-shot
learning model, consists of several distinct segments.
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Figure 5. The architecture of the vehicle color module
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Methodology

" Through an in-depth analysis of vehicle maneuver trajectories, the vehicle motion
module has been developed as a cultured direction control system.

Figure 6. The example of vehicle motion module.
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Methodology

" The vehicle surrounding module effectively leverages multiple sources of
information to generate accurate predictions.

Branch 1 GLIP Prediction

Frame

NL Descriptions

"l [
"Ared sedan drives forward.",
"A red midsize sedan keep straight.",
"Ared car drove through an intersection."],

"nl_other_views": [
"Ared sedan keeping straight.",
"A red sedan runs down the street followed by a green van.",
"A maroon sedan runs down the road followed by a green vehicle." ]

Frame Path

/502/c00Timgo

Figure 7. The structure of vehicle surrounding module.
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Methodology

" Following vector data fusion, the match control system is employed to identify
the optimal text-video match.

Algorithm 1 Matching Elimination System

1: Input the text-video matrix tv

2: for start row = 1, length do

3:  Get the highest score column index hci in tv[row, ]

4:  Get the highest score row index hri in tv[:, heil

5. if row == hri then

6 For every element in column hci except
tv[hri, hei], minus a threshold mt

7. end if

8: end for

Figure 8. The matrix example of matching elimination system.
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Experiment

" The dataset employed for the evaluation of the MLVR model is CityFlow-NL,
consisting of 2,155 distinct vehicle trajectories and associated track IDs, as well as
corresponding natural language descriptions.

" |In addition to the primary dataset, a separate test set comprising 184 distinct
vehicle trajectories is utilized to assess the MLVR model’s final performance.

" The mean reciprocal rank (MRR) serves as the primary evaluation metric for
assessing the performance of the MLVR model using the CityFlow-NL dataset.
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Experiment

" The ablation study emphasizes the efficacy of each module in augmenting the overall
performance of our MLVR model, and our MLVR model achieves a second-place
ranking with an MRR score of 0.8179.

Baseline VCT VM VS1 VS12 MCS MRR Rank Team ID Team Name MRR
v 0.2761 1 9  HCMIU-CVIP  0.8263
y o jgisg 2 28 IOV 0.8179
% % % /06714 3 85  AIO-NLRetrieve 0.4795
Ve v v v 07160 4 IST  AIO2022 0.4659
v v v v v v 0.8179 5 76 DUT_RelD 0.4392

Table 1. Ablation study analysis of our MLVR method. Table 2. The public leaderboard of tracked-vehicle retrieval
by natural language descriptions.
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Conclusion

"  Creation of the MLVR system, an innovative multimodal technique.
" MLVR uses text, image, and video data for enhanced vehicle tracking.
" Showcased exceptional performance in the 7th Al City Challenge.

" Demonstrated significant potential in traffic management.
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Code: https://github.com/eadst/MLVR



