A Unified Multi-modal Structure for Retrieving Tracked Vehicles through Natural Language Descriptions

2023 CVPR AI City Challenge Track 2

Tracked-Vehicle Retrieval by Natural Language Descriptions

Dong Xie¹, Linhu Liu¹, Shengjun Zhang², Jiang Tian¹

¹ AI Lab, Lenovo Research, Beijing, China

- {xiedong2, liulh7, tianjiang1}@lenovo.com
- ² United Imaging Healthcare Surgical Technology, Wuhan, China zsjcameron@gmail.com

Content

- Introduction
- Methodology
- Experiment
- Conclusion

Introduction

The AI City Challenge Track 2 incorporates the language modality, called Natural language-based vehicle track retrieval. This task aims to retrieve single-camera tracks of vehicles that are consistent with the natural language query.

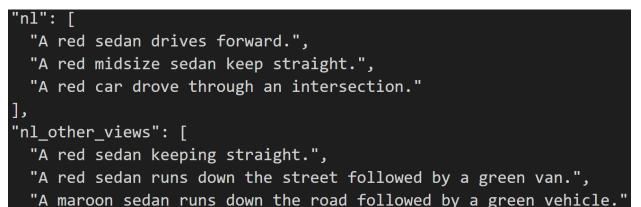


Figure 1. An example from CityFlow-NL for 2023 CVPR AI City Challenge Track 2.

Lenovo

Slide 3 of 15

 An innovative deep learning system called Multimodal Language Vehicle Retrieval (MLVR) is developed for text-vehicle retrieval.

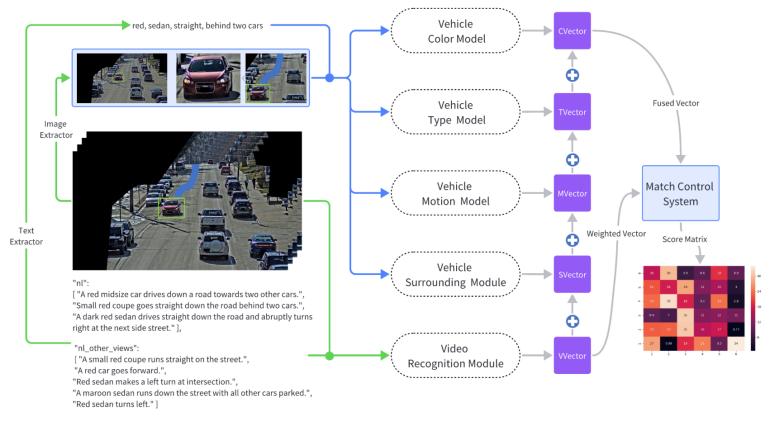


Figure 2. The structure of our MLVR system.

Lenovo

Slide 4 of 15

An analysis of Natural Language (NL) descriptions and corresponding descriptions from alternative perspectives (NL other view descriptions) reveals a connection.

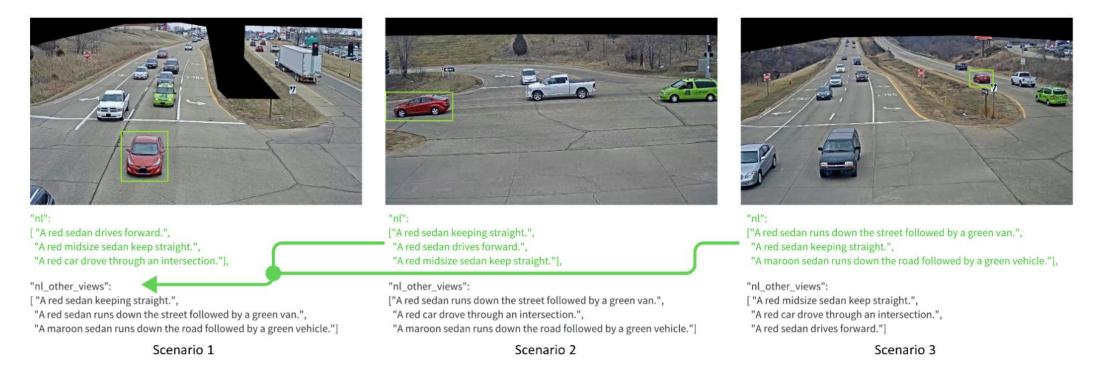


Figure 3. The different video frames and NL descriptions of the same vehicle in the CityFlow-NL train dataset.

Lenovo

Slide 5 of 15

The video recognition module, which serves as the foundation of our MLVR model, is adapted from the X-CLIP algorithm to effectively discern the association between video clips and their corresponding text sentences.

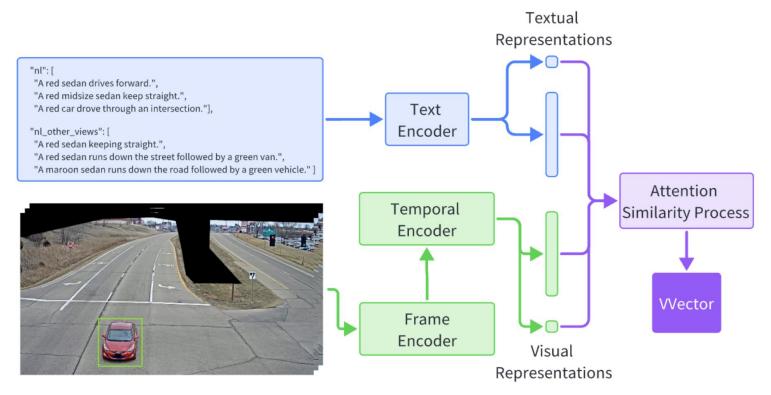


Figure 4. The primary architecture of the video recognition module.

Lenovo

Slide 6 of 15

The architecture of the vehicle color module, which employs a CLIP-based few-shot learning model, consists of several distinct segments.

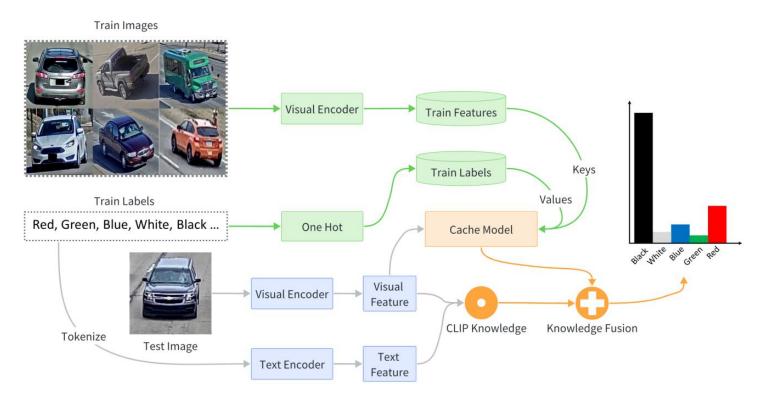


Figure 5. The architecture of the vehicle color module

Lenovo

Slide 7 of 15

Through an in-depth analysis of vehicle maneuver trajectories, the vehicle motion module has been developed as a cultured direction control system.

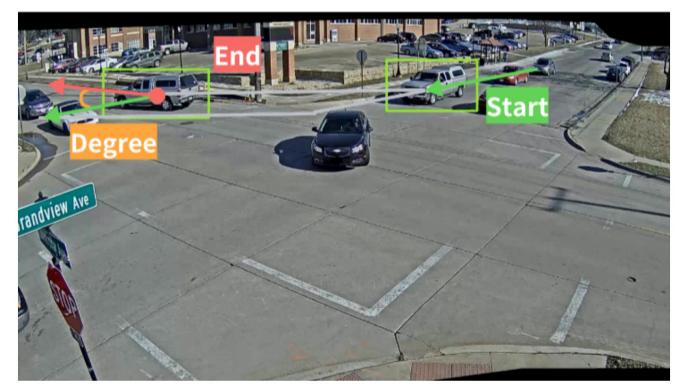


Figure 6. The example of vehicle motion module.

Lenovo

Slide 8 of 15

The vehicle surrounding module effectively leverages multiple sources of information to generate accurate predictions.

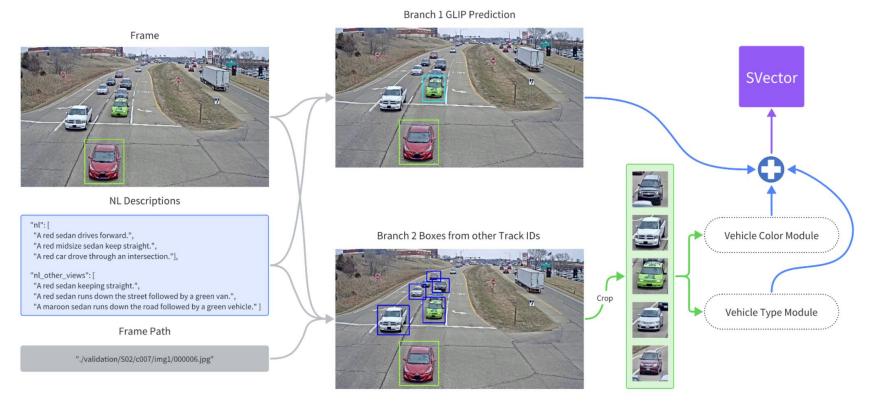


Figure 7. The structure of vehicle surrounding module.

Lenovo

Slide 9 of 15

 Following vector data fusion, the match control system is employed to identify the optimal text-video match.

I	nput the text-video matrix tv
f	or start row = 1, length do
:	Get the highest score column index hci in $tv[row, :]$
:	Get the highest score row index hri in $tv[:, hci]$
:	if $row == hri$ then
	For every element in column hci except
	tv[hri, hci], minus a threshold mt
:	end if
e	nd for

Figure 8. The matrix example of matching elimination system.

Lenovo

Slide 10 of 15

Experiment

- The dataset employed for the evaluation of the MLVR model is CityFlow-NL, consisting of 2,155 distinct vehicle trajectories and associated track IDs, as well as corresponding natural language descriptions.
- In addition to the primary dataset, a separate test set comprising 184 distinct vehicle trajectories is utilized to assess the MLVR model's final performance.
- The mean reciprocal rank (MRR) serves as the primary evaluation metric for assessing the performance of the MLVR model using the CityFlow-NL dataset.

Experiment

The ablation study emphasizes the efficacy of each module in augmenting the overall performance of our MLVR model, and our MLVR model achieves a second-place ranking with an MRR score of 0.8179.

Baseline	VCT	VM	VS1	VS12	MC	S MRR
\checkmark						0.2761
\checkmark	\checkmark					0.4191
\checkmark	\checkmark	\checkmark				0.5885
\checkmark	\checkmark	\checkmark			\checkmark	0.6714
\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	0.7160
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	0.8179

Table 1. Ablation study analysis of our MLVR method.

Rank	Team ID	Team Name	MRR
1	9	HCMIU-CVIP	0.8263
2	28	IOV	0.8179
3	85	AIO-NLRetrieve	0.4795
4	151	AIO2022	0.4659
5	76	DUT_ReID	0.4392

Table 2. The public leaderboard of tracked-vehicle retrievalby natural language descriptions.

Lenovo

- Creation of the MLVR system, an innovative multimodal technique.
- MLVR uses text, image, and video data for enhanced vehicle tracking.
- Showcased exceptional performance in the 7th AI City Challenge.
- Demonstrated significant potential in traffic management.

- [1] 2023 AI City Challenge. https://www.aicitychallenge.org/
- [2] Qi Feng, Vitaly Ablavsky, and Stan Sclaroff. Cityflow-nl: Tracking and retrieval of vehicles at city scale by natural language descriptions. arXiv preprint arXiv:2101.04741, 2021.
- [3] Yiwei Ma, Guohai Xu, Xiaoshuai Sun, Ming Yan, Ji Zhang, and Rongrong Ji. X-clip: End-to-end multi-grained contrastive learning for video-text retrieval. In Proceedings of the 30th ACM International Conference on Multimedia, pages 638–647, 2022.
- [4] Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan Li, Yiwu Zhong, Lijuan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, et al. Grounded language-image pre-training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10965–10975, 2022.

Lenovo

Thank You! Q&A

Dong Xie Email: xiedong2@lenovo.com

Code: https://github.com/eadst/MLVR